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Abstract 

Accurate forecasting of agricultural production is critical for food security, policy planning, and 

economic stability in India. This study employs the Auto-Regressive Integrated Moving Average 

(ARIMA) model to forecast food grain production using annual time series data from 1950 to 2024, 

sourced from the Reserve Bank of India (RBI). Following the Box-Jenkins methodology, the 

Augmented Dickey-Fuller (ADF) test confirmed stationarity (p < 0.05). Among competing models, 

ARIMA (0,1,1) was selected as optimal due to its lowest Akaike Information Criterion (AIC = 12.254) 

and statistically significant coefficients (p < 0.0001). Diagnostic checks, including the Ljung-Box Q 

test (p> 0.05) and Jarque-Bera test (p= 0.284), confirmed residual white noise and normality. The 

model forecasts a continued decline in food grain production, projecting values of 489.46, 451.64, and 

413.81 (units) for 2025-2027, respectively. While the ARIMA model effectively captures short-term 

temporal patterns, its linear assumptions and exclusion of exogenous variables (e.g., climate, policy) 

limit long-term accuracy. This study underscores the utility of ARIMA as a policy tool for short-term 

planning while advocating for future integration of multivariate or machine learning models to enhance 

predictive robustness. 

 
Keywords: ARIMA, agricultural forecasting, food grain production, time series, India, Box-Jenkins, 

policy planning 

 

Introduction 

Agriculture remains the backbone of India’s economy. According to the Economic Survey, 

the Indian agriculture sector provides livelihood support to about 42.3% of the population 

and contributes 18.2% to the country’s GDP at current prices. The sector has shown 

resilience, registering an average annual growth rate of 4.18% at constant prices over the last 

five years. However, provisional estimates for 2023-24 indicate a slowdown to 1.4%, 

highlighting the sector’s vulnerability to climatic variability, policy shifts, and market 

fluctuations. Accurate forecasting of agricultural output is therefore essential for ensuring 

food security, guiding policy formulation, and enabling economic stability. 

Historically, the Green Revolution of the 1960s marked a transformative phase in Indian 

agriculture, significantly boosting food grain production—particularly in states like Punjab 

and Haryana—through the adoption of high-yielding variety (HYV) seeds, chemical 

fertilizers, and expanded irrigation. This era established India as self-sufficient in staple 

crops like wheat and rice. Scholars such as Singh (2018) and Chand (2019) [11, 3] emphasize 

the success of this period in addressing food shortages and enhancing productivity. However, 

long-term studies by Birthal et al. (2015) and Kaur and Singh (2020) [2, 7] reveal adverse 

environmental consequences, including soil degradation, groundwater depletion, and 

biodiversity loss, especially in intensively farmed regions. 

Over time, India has witnessed a shift in cropping patterns, with a growing diversification 

from food grains to high-value commercial crops such as cotton, oilseeds, fruits, and 

vegetables—particularly in states like Maharashtra, Gujarat, and Andhra Pradesh. While 

food grains remain dominant, this diversification reflects changing consumer preferences, 

market liberalization, and government policies promoting horticulture and allied sectors 

(Birthal et al., 2017, 2020) [10]. 
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 Despite progress, regional disparities persist. Eastern and 

northeastern states continue to lag due to inadequate 

infrastructure, fragmented landholdings, and limited access 

to credit and technology (Jha, 2011; Mohanty, 2013) [6, 8]. 

In recent years, India has emerged as one of the world’s top 

agricultural producers. For 2023-24, total food grain 

production was estimated at 3288.52 Lakh Metric Tons 

(LMT), with projections for 2025 reaching around 332 

million metric tons. Uttar Pradesh, Punjab, Madhya Pradesh, 

and West Bengal are among the leading agricultural states, 

each specializing in key crops—wheat in Punjab and Uttar 

Pradesh, rice in West Bengal, and oilseeds in Madhya 

Pradesh. Technological advancements, including satellite-

based monitoring, drones, artificial intelligence, and the 

Internet of Things, are driving a paradigm shift toward 

smarter, data-driven farming (Reddy et al., 2021) [10]. 

Despite these developments, agricultural forecasting 

remains a challenge. Traditional methods often fail to 

capture the complex temporal dependencies and 

autocorrelation inherent in agricultural time series data. In 

contrast, time series models such as ARIMA, grounded in 

the methodology, have demonstrated robustness in modeling 

and forecasting economic and agricultural trends. ARIMA 

models are particularly suited for data exhibiting trends, 

seasonality, and serial correlation—common features in 

agricultural production series. 

This study addresses the critical need for reliable, data-

driven forecasting of India’s food grain production by 

employing the ARIMA model. The primary research 

problem lies in the sector’s sensitivity to exogenous 

shocks—climate change, policy changes, and market 

dynamics—which traditional models often overlook. By 

analyzing annual time series data from 1950 to 2024 

sourced from the Reserve Bank of India (RBI), this study 

aims to: (1) examine historical trends in food grain 

production, (2) develop an optimal ARIMA model for 

forecasting, and (3) provide evidence-based insights for 

policymakers. The findings contribute to the growing 

literature on agricultural forecasting in developing 

economies and offer a replicable framework for regional and 

crop-specific analyses. 

 

Materials and Methods. 

The study utilized annual time series data on total food grain 

production in India from 1950 to 2024, obtained from the 

Reserve Bank of India’s (RBI) official database on the 

Index of Agricultural Production (https://www.rbi.org.in/). 

The variable “Total Foodgrains” served as the proxy for 

agricultural output. 

Data analysis was conducted using R software (version 

4.3.1), employing packages such as `forecast` and `tseries`, 

for time series modeling and diagnostic testing. The Box-

Jenkins (1976) ARIMA modeling framework was adopted, 

which involves three main stages: identification, estimation, 

and diagnostic checking. 

The Augmented Dickey-Fuller (ADF) test was applied to 

assess the stationarity of the time series. In cases of non-

stationarity, differencing is performed to achieve 

stationarity. Based on the autocorrelation function (ACF) 

and partial autocorrelation function (PACF) plots, various 

ARIMA (p, d, q) models were estimated. Model selection 

was based on information criteria, including the Akaike 

Information Criterion (AIC), Schwarz Bayesian Criterion 

(BIC), and Hannan-Quinn Criterion (HQC), with preference 

given to models with lower values and fewer parameters. 

The best-fitting model was subjected to residual diagnostic 

checks using the Ljung-Box Q statistic to test for 

autocorrelation in residuals and the Jarque-Bera test to 

assess normality. Additionally, the ARMA roots plot was 

used to verify stationarity and invertibility. Forecasting was 

performed for the years 2025-2027, with accuracy evaluated 

using metrics such as Root Mean Squared Error (RMSE), 

Mean Absolute Error (MAE), Mean Absolute Percentage 

Error (MAPE), and Theil’s Inequality Coefficient. No field 

experiments or physical instruments were used, as the study 

is entirely based on secondary time series data analysis. 

 

Results 

Descriptive statistics revealed that the mean food grain 

production from 1950 to 2024 was 1626.26 units, with a 

standard deviation of 771.97, indicating high variability. 

The time series plot showed a consistent downward trend, 

particularly after 2000, suggesting structural or 

environmental challenges affecting production. 

The Augmented Dickey-Fuller (ADF) test yielded a test 

statistic of 14.44642 with a p-value of 0.0001, which is 

significantly lower than the 1%, 5%, and 10% critical 

values, confirming that the series is stationary without 

requiring additional differencing. 

Among the models—ARIMA (0,1,1), ARIMA (1,1,0), and 

ARIMA (1,1,1)—the ARIMA(0,1,1) model was selected as 

optimal due to its lowest AIC (12.254), BIC (12.348), and 

HQC (12.292), despite a marginally lower R-squared 

compared to ARIMA(1,1,1). 

The estimated coefficients for ARIMA (0,1,1) were 

statistically significant: the MA (1) coefficient was -0.544 (p 

< 0.0001), and the constant term was -37.825 (p < 0.0001), 

indicating a negative drift in the differenced series. 

Residual diagnostics confirmed the adequacy of the model. 

The Ljung-Box Q test showed p-values greater than 0.05 

across all lags (ranging from 0.590 to 0.966), indicating no 

significant autocorrelation in residuals. The Jarque-Bera test 

resulted in a p-value of 0.284, confirming the normality of 

residuals. 

Forecasting results projected a continued decline in food 

grain production: 489.46 units in 2025, 451.64 units in 

2026, and 413.81 units in 2027. The model’s forecasting 

accuracy was supported by a low Theil’s Inequality 

Coefficient (0.0857) and a MAPE of 19.80%, although the 

bias proportion of 0.761 indicated a systematic deviation in 

predictions. 

 

Discussion and Conclusion 

The findings of this study reveal a concerning long-term 

decline in India’s food grain production, as captured by the 

ARIMA (0,1,1) model. The forecasted drop from 489.46 

units in 2025 to 413.81 units in 2027 contradicts some 

official projections, such as the anticipated 332 million 

metric tons for 2024 (Government of India, 2024), 

suggesting a possible discrepancy in data units or 

definitions—likely due to the use of an index value rather 

than absolute production figures. This highlights the 

importance of contextual interpretation when applying 

statistical models to policy planning. 

The selection of ARIMA (0,1,1) as the optimal model aligns 

with prior studies, such as Padhan (2012) [9], which also 

found MA components effective in capturing shock 
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 adjustments in agricultural output. The significant negative 

MA (1) coefficient indicates that unanticipated negative 

shocks—such as droughts or pest outbreaks—have a 

persistent dampening effect on production, consistent with 

the sector’s vulnerability to climatic risks (Aggarwal, 2009) 

[1]. While the model demonstrated strong statistical 

performance—confirmed by white noise residuals and 

normal error distribution—its limitations are notable. The 

ARIMA model is purely univariate and does not account for 

exogenous variables such as rainfall, temperature, fertilizer 

use, or policy interventions like MSP hikes or subsidies. 

This restricts its long-term reliability, as agricultural output 

is inherently influenced by multidimensional factors. 

Moreover, the high residual standard deviation (106.86) and 

wide error range (-278.97 to 267.07) suggest unexplained 

volatility, possibly due to omitted variables or structural 

breaks. The high bias proportion (76.1%) further indicates 

that the model may systematically underestimate or 

overestimate actual values, potentially due to the linear 

assumptions of ARIMA in a non-linear real-world context. 

Nonetheless, the study reaffirms the utility of ARIMA 

models in short-term forecasting and trend identification, 

particularly in data-scarce or rapidly changing 

environments. For policymakers, these forecasts serve as an 

early warning signal, urging immediate interventions such 

as investment in climate-resilient crops, expansion of 

irrigation infrastructure, and strengthening of market 

linkages. 

Future research should explore multivariate models like 

VAR or machine learning approaches (e.g., LSTM, Random 

Forest) that can incorporate climate, economic, and policy 

variables to improve predictive accuracy. Additionally, 

state-level or crop-specific ARIMA models could provide 

more targeted insights. 

In conclusion, this study successfully applied the ARIMA 

(0,1,1) model to forecast India’s food grain production, 

revealing a statistically significant downward trend. While 

the model is robust for short-term planning, its limitations 

underscore the need for integrated, data-rich forecasting 

frameworks to ensure long-term food security in India’s 

evolving agrarian landscape. 
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