

ISSN Print: 2664-844X ISSN Online: 2664-8458 NAAS Rating (2025): 4.97 IJAFS 2025; 7(11): 269-272 www.agriculturaljournals.com Received: 12-10-2025

Received: 12-10-2025 Accepted: 15-11-2025

Garkar SB

M.Sc. (Agri.) Student, Department of Agronomy, College of Agriculture, VNMKV, Parbhani, Maharashtra, India

Dr. Gokhale DN

Ex. Director of Extension Education, VNMKV, Parbhani, Maharashtra, India

Shelke VR

Student, Department of Agronomy, College of Agriculture, VNMKV, Parbhani, Maharashtra, India

Hendre AR

Student, Department of Agronomy, College of Agriculture, VNMKV, Parbhani, Maharashtra, India

Pidurkar VD

Student, Department of Agricultural Entomology, Raja Balwant Singh College, Bichpuri, Dr. B. R. Ambedkar University, Agra, Uttar Pradesh, India

Shirale SP

Student, Department of Agronomy, College of Agriculture, VNMKV, Parbhani, Maharashtra, India

Chavan SR

Student, Department of Agronomy, College of Agriculture, VNMKV, Parbhani, Maharashtra, India

Corresponding Author: Garkar SB

M.Sc. (Agri.) Student, Department of Agronomy, College of Agriculture, VNMKV, Parbhani, Maharashtra, India

Study the Influence of crop geometry on growth of soybean (Glycine max L. Merrill)

Garkar SB, Gokhale DN, Shelke VR, Hendre AR, Pidurkar VD, Shirale SP and Chavan SR

DOI: https://www.doi.org/10.33545/2664844X.2025.v7.i11d.968

Abstract

A field experiment was conducted during Kharif 2024 at the Experimental Farm, Department of Agronomy, VNMKV, Parbhani to study the Influence of crop geometry on growth and yield of soybean (Glycine max L. Merrill)". The experiment was laid out in a Randomized Block Design (RBD) with eight treatments replicated three times, comprising a total of 24 plots. The gross plot size was 9.0 $m \times 6.0$ m, and the net plot size varied according to treatment. The treatments consisted of eight plant spacings: $T_1 - 30 \text{ cm} \times 7.5 \text{ cm} (4,44,444 \text{ plants ha}^{-1}), T_2 - 45 \text{ cm} \times 5 \text{ cm} (4,44,444 \text{ plants ha}^{-1}), T_3 - 45 \text{ cm} \times 5 \text{ cm} (4,44,444 \text{ plants ha}^{-1}), T_3 - 45 \text{ cm} \times 5 \text{ cm} (4,44,444 \text{ plants ha}^{-1}), T_3 - 45 \text{ cm} \times 5 \text{ cm} (4,44,444 \text{ plants ha}^{-1}), T_3 - 45 \text{ cm} \times 5 \text{ cm} (4,44,444 \text{ plants ha}^{-1}), T_3 - 45 \text{ cm} \times 5 \text{ cm} (4,44,444 \text{ plants ha}^{-1}), T_3 - 45 \text{ cm} \times 5 \text{ cm} (4,44,444 \text{ plants ha}^{-1}), T_3 - 45 \text{ cm} \times 5 \text{ cm} (4,44,444 \text{ plants ha}^{-1}), T_3 - 45 \text{ cm} \times 5 \text{ cm} (4,44,444 \text{ plants ha}^{-1}), T_3 - 45 \text{ cm} \times 5 \text{ cm} (4,44,444 \text{ plants ha}^{-1}), T_3 - 45 \text{ cm} \times 5 \text{ cm} (4,44,444 \text{ plants ha}^{-1}), T_3 - 45 \text{ cm} \times 5 \text{ cm} (4,44,444 \text{ plants ha}^{-1}), T_3 - 45 \text{ cm} \times 5 \text{ cm} (4,44,444 \text{ plants ha}^{-1}), T_3 - 45 \text{ cm} \times 5 \text{ cm} (4,44,444 \text{ plants ha}^{-1}), T_3 - 45 \text{ cm} \times 5 \text{ cm} (4,44,444 \text{ plants ha}^{-1}), T_3 - 45 \text{ cm} \times 5 \text{ cm} (4,44,444 \text{ plants ha}^{-1}), T_3 - 45 \text{ cm} \times 5 \text{ cm} (4,44,444 \text{ plants ha}^{-1}), T_3 - 45 \text{ cm} \times 5 \text{ cm} \times 5 \text{ cm} (4,44,444 \text{ plants ha}^{-1}), T_3 - 45 \text{ cm} \times 5 \text{ cm} \times 5 \text{ cm} (4,44,444 \text{ plants ha}^{-1}), T_3 - 45 \text{ cm} \times 5 \text{ cm} (4,44,444 \text{ plants ha}^{-1}), T_3 - 45 \text{ cm} \times 5 \text{ cm} \times 5 \text{ cm} (4,44,444 \text{ plants ha}^{-1}), T_3 - 45 \text{ cm} \times 5 \text{ cm} (4,44,444 \text{ plants ha}^{-1}), T_3 - 45 \text{ cm} \times 5 \text{ cm} \times 5 \text{ cm} \times 6 \text{ cm}$ cm \times 10 cm (2,22,222 plants ha⁻¹), T₄ - 45 cm \times 20 cm (1,11,111 plants ha⁻¹), T₅ - 45 cm \times 30 cm $(74,074 \text{ plants } \text{ha}^{-1}), \text{ T}_6$ - 60 cm \times 10 cm $(1,66,666 \text{ plants } \text{ha}^{-1}), \text{ T}_7$ - 60 cm \times 20 cm (83,333 plants mass) ha^{-1}), and T_8 - 60 cm \times 30 cm (55,555 plants ha^{-1}). The gross plot size was 9.00 m \times 6.00 m, while net plot dimensions varied according to the treatment layout. The experimental site featured a levelled and well-drained clay soil, characterized by moderate available nitrogen, medium phosphorus, and high potassium content. The soybean variety MAUS-725 was selected for the study, and sowing was carried out manually using the dibbling method on 4th July 2024. The treatment T₃ (45 cm × 10 cm) emerged as the most efficient geometry for maximizing growth and yield without compromising plant growth or seed quality. It provided an optimal balance between plant population and resource availability, leading to superior performance in most growth and yield parameters. Therefore, under the agro-climatic conditions of Parbhani, district of M.S, adopting a spacing of 45 cm × 10 cm is recommended for enhancing productivity and profitability in soybean cultivation. Further studies integrating spacing with nutrient and water management may offer additional insights for sustainable intensification.

Keywords: Growth attributes, Plant density, plant spacing, Soybean, Yield performance

Introduction

Among the pulses grown in India and Maharashtra soybean is an important crop. Soybean (*Glycine max* L. Merrill) is the most important legume crop in the family Leguminosae, subfamily Papilionaceae and genus Glycine. Soybean was cultivated in China as early as 3000 B.C. (Hymowitz, 1970) [4]. It has seen remarkable growth in production, processing and trade in recent years revolutionizing the rural economy and improving the socioeconomic condition of farmers (Singh *et al.*, 2013) [13].

It is a major oilseed crop that is widely used as a pulse, oilseed, vegetarian meat and in products such as soya milk. It is popularly known as the "Wonder Crop" or "Golden Bean" of the twenty-first century (Rani *et al.*, 2017) [12]. Soybean contains 40-42% protein and about 20% oil (Nagalakshmi *et al.*, 2003). It also comprises 30% carbohydrates, 5% minerals, 4-5% crude fiber, 0.5% lecithins and 4% saponins along with significant quantities of vitamins and amino acids. Soybean is a multipurpose crop primarily grown for edible oil extraction and also used in soya-based products like soya milk, paneer (tofu), yogurt, ice cream, butter and fortified foods. These products are widely accepted due to their nutritional and economic value (Gandhi and Zhou, 2014) [3]. Isoflavones in soybean also make it valuable in the cosmetic and medicinal industries as they help reduce the risk of cardiovascular diseases and diabetes (Messina, 1999) [7].

Soybean stands as the leading oilseed crop globally, both in terms of total oilseed and edible oil production. According to USDA estimates for 2022-23 global soybean production reached approximately 386 million metric tons, cultivated over an area of 130 million hectares, with an average yield of around 2970 kg ha⁻¹.

The top soybean-producing countries include Brazil, United States, Argentina and China while India holds the fifth position globally. In India during the 2023 *kharif* season soybean was cultivated over 12 million hectares, yielding about 12 million tonnes with an average productivity of approximately 1000 kg ha⁻¹ (MAFW, Government of India, 2023). Major soybean-producing states in the country include Madhya Pradesh, Maharashtra, Rajasthan, Telangana, Karnataka and Chhattisgarh with Madhya Pradesh leading the way cultivating 5.20 million hectares and contributing about 5.24 million tonnes to national output (SOPA, 2023).

Materials and Methods

A field experiment was carried out to investigate the 'Influence of crop geometry on growth and yield of soybean (*Glycine max* L. Merrill)' at the Experimental Farm, Department of Agronomy, VNMKV, Parbhani.

Geographically, Parbhani has a semi-arid climate and is located at latitude 190 16' North and longitude 760 47' East. From June to December 2024, the Agricultural Meteorological Observatory recorded weekly meteorological data related to mean total rainfall, rainy days, maximum and minimum temperature, mean relative humidity, mean evaporation (mm), and mean bright sunshine hours per day of corresponding weeks that prevailed during crop growth. V.N.M.K.V. Parbhani receives 869.7 mm of rainfall throughout the crop growth period.

Experimental details

- 1. Name of crop: Soybean (*Glycine max* L. Merrill)
- 2. Varieties: MAUS -725
- 3. Design: Randomized block design (RBD)
- 4. Replication: 3
- 5. Number of treatments: 8
- 6. Number of plots: 24
- 7. Plot size: Gross 9.00 m x 6.00 m
- 8. Net as per treatment

Treatment Details

- 1. T_1 30 cm x 7.5 cm (4,44,444 plants ha⁻¹)
- 2. T_2 45 cm x 5 cm (4,44,444 plants ha⁻¹)
- 3. T_3 45 cm x 10 cm (2,22,222 plants ha⁻¹)
- 4. T_4 45 cm x 20 cm (1,11,111 plants ha⁻¹)
- 5. T_5 45 cm x 30 cm (74,074 plants ha⁻¹)
- 6. T_{6} 60 cm x 10 cm (1,66,666 plants ha⁻¹)
- 7. T_7 -60 cm x 20 cm (83,333plants ha⁻¹)
- 8. T_{8} 60 cm x 30 cm (55,555 plants ha⁻¹)

Results and Discussions

Plant height (cm)

Plant height of soybean was significantly influenced by planting geometry from 45 DAS onwards (Table 1). At 30 DAS, differences were non-significant, though T_1 (30 \times 7.5 cm) recorded the tallest plants (19.18 cm), followed by T_2 (18.65 cm) and T_3 (18.20 cm), while T_8 (60 \times 30 cm) showed the lowest height (15.23 cm).

Table 1: Mean	plant height	(cm) of soyb	bean as influenced	by crop geometry
----------------------	--------------	--------------	--------------------	------------------

Treatment		Plant height (cm)					
Treatment	30 DAS	45 DAS	60 DAS	75 DAS	Harvest		
T ₁ (30 cm x 7.5 cm)	19.18	29.81	40.53	45.27	47.71		
T ₂ (45 cm x 5 cm)	18.65	28.46	39.15	43.66	46.04		
T ₃ (45 cm x 10 cm)	18.20	27.68	37.87	41.77	43.97		
T ₄ (45 cm x 20 cm)	17.10	23.40	33.45	36.77	38.34		
T ₅ (45 cm x 30 cm)	16.04	21.08	30.58	33.41	34.49		
T ₆ (60 cm x 10 cm)	17.51	25.17	35.34	38.82	40.58		
T ₇ (60 cm x 20 cm)	16.58	21.77	31.48	34.47	35.65		
T ₈ (60 cm x 30 cm)	15.23	19.41	28.68	31.01	31.64		
SE. (m). ±	1.13	1.3	1.27	1.83	2.04		
CD @ 5%	NS	3.92	3.85	5.53	6.16		
G.M.	15.20	24.6	34.63	38.15	39.8		

From 45 DAS onward, the effect became significant, with T_1 consistently producing the tallest plants (29.81, 40.53, 45.27, and 47.71 cm at 45, 60, 75 DAS and harvest, respectively), statistically at par with T_2 and T_3 . Wider spacings such as T_4 and T_8 recorded shorter plants, with T_8 consistently the lowest across all stages.

Overall, closer spacings (T₁ and T₃) promoted taller plants due to stronger competition for light, triggering shade-induced elongation (Pierik *et al.*, 2004) ^[10]. Conversely, wider spacings (T₄ and T₈) resulted in shorter, bushier growth owing to better light penetration and reduced crowding. Thus, planting geometry played a key role in shaping soybean plant architecture and optimizing canopy

structure for efficient resource use (Board & Kahlon, 2011; De Bruin & Pedersen, 2008).

Number of branches plant⁻¹

Planting geometry had a marked effect on branch development in soybean from 60 DAS onward (Table 2). At 45 DAS, though differences were non-significant, T_8 (60 × 30 cm) recorded the highest branches (4.47), followed by T_5 (4.07) and T_7 (3.67), while the lowest was in T_1 (1.67) under closed spacing. At 60 DAS, spacing effects became significant— T_8 (6.27) produced the most branches, statistically at par with T_5 (5.87), followed by T_7 (5.47) and T_4 (5.07), whereas T_1 (3.47) and T_2 (3.87) recorded the fewest.

Table 2: Mean number of branches plant⁻¹ of soybean as influenced by crop geometry

Treetment	Number of branches per plant				
Treatment	45 DAS	60 DAS	75 DAS		
T ₁ (30 cm x 7.5 cm)	1.67	3.47	4.57		

T ₂ (45 cm x 5 cm)	2.07	3.87	4.97
T ₃ (45 cm x 10 cm)	2.47	4.27	5.37
T ₄ (45 cm x 20 cm)	3.27	5.07	6.17
T ₅ (45 cm x 30 cm)	4.07	5.87	6.97
T ₆ (60 cm x 10 cm)	2.87	4.67	5.77
T ₇ (60 cm x 20 cm)	3.67	5.47	6.57
T ₈ (60 cm x 30 cm)	4.47	6.27	7.37
SE. (m). ±	0.13	0.22	0.25
CD @ 5%	NS	0.68	0.76
G.M.	3.06	4.87	5.97

At 75 DAS, T8 (7.37) again showed the highest number of branches, comparable with T_5 (6.97), followed by T_7 (6.57) and T_4 (6.17), while T_1 (4.57) had the minimum. Overall, wider spacings (T_8 , T_5 , T_7) consistently promoted higher branching due to reduced competition and improved light and nutrient availability, whereas closer spacings (T_1 and T_3) restricted lateral growth. Hence, adopting optimal planting geometry enhances branching, a vital contributor to soybean yield potential (Patel *et al.*, 2020) ^[9].

Number of leaves plant⁻¹

Planting geometry significantly influenced leaf production in soybean at various growth stages (Table 3). The number of leaves increased steadily with crop age, with wider spacings promoting greater leaf development due to reduced competition for resources (Kumawat *et al.*, 2015; Singh *et al.*, 2020) ^[14]. At 30 DAS, differences were non-significant, but T_8 (60 × 30 cm) recorded the highest leaf count (8.7), followed by T_5 (8.5) and T_7 (8.4), while T_1 (6.2) had the lowest. At 45 DAS, spacing effects became significant T_8 (16.5) produced the most leaves, statistically at par with T_5 (16.2), T_7 (15.9) and T_4 (15.5), while T_1 (12.5) recorded the minimum.

Table 3: Mean number of leaves plant⁻¹ of soybean as influenced by crop geometry

Treatment	Number of leaves plant-1				
1 reatment	30 DAS	45 DAS	60 DAS	75 DAS	
T ₁ (30 cm x 7.5 cm)	6.2	12.5	19.1	21.4	
T ₂ (45 cm x 5 cm)	6.8	13	19.6	22	
T ₃ (45 cm x 10 cm)	7.4	14.3	21.2	24.1	
T ₄ (45 cm x 20 cm)	8.1	15.5	23.3	26.5	
T ₅ (45 cm x 30 cm)	8.5	16.2	24	27.2	
T ₆ (60 cm x 10 cm)	7.6	14.6	21.8	24.7	
T ₇ (60 cm x 20 cm)	8.4	15.9	23.6	26.8	
T ₈ (60 cm x 30 cm)	8.7	16.5	24.5	28	
SE. (m). ±	0.34	0.64	0.92	1.06	
CD @ 5%	NS	1.94	2.8	3.2	
G.M.	7.71	14.81	22.13	25.08	

At 60 DAS, T_8 (24.5) again showed the highest leaf number, comparable with T_5 (24.0), T_7 (23.6) and T_4 (23.3); the lowest was in T_1 (19.1). At 75 DAS, the trend persisted— T_8 (28.0) had the maximum leaves, statistically at par with T_5 (27.2), T_7 (26.8) and T_4 (26.5), whereas T_1 (21.4) remained lowest. Overall, wider spacings (T_8 , T_5 , T_7 , T_4) consistently enhanced leaf development, reflecting improved light interception and resource use, while closer spacings (T_1 and T_3) restricted leaf proliferation due to crowding. Hence, adopting optimal planting geometry promotes canopy

expansion, photosynthetic efficiency, and yield potential in soybean (Rana *et al.*, 2014)^[11].

Total dry matter plant⁻¹ (g plant⁻¹)

Planting geometry significantly influenced total dry matter accumulation in soybean across all growth stages (Table 4). At 30 DAS, differences were non-significant, though T₈ (60 \times 30 cm) recorded the highest TDM (8.95 g plant⁻¹) followed by T_5 (7.10 g) and T_4 (6.85 g), while the lowest was in T_1 (3.50 g), indicating early suppression under dense planting. From 45 DAS onwards, spacing effects became significant. T₈ consistently produced the Highest dry matter (19.65, 32.60, 41.85, and 51.18 g plant⁻¹ at 45, 60, 75 DAS and harvest, respectively), statistically comparable with T_5 , and followed by T₄ and T₇. The lowest values were recorded in T_1 at all stages. Overall, wider spacings (particularly T_8 : 60 × 30 cm) promoted greater dry matter accumulation due to reduced competition and improved light, nutrient and moisture availability, whereas denser spacing (T_1 : 30 × 7.5 cm) restricted biomass buildup. Intermediate geometries such as T₅, T₄, and T₇ also performed well, suggesting that balanced spacing can optimize vegetative growth and total biomass production in soybean (Zhao *et al.*, 2009) [16].

Table 4: Mean Total dry matter plant⁻¹ (g) of soybean as influenced by crop geometry

Treatment	Total Dry Matter per Plant (g/plant)					
Treatment	30 DAS	45 DAS	60 DAS	75 DAS	Harvest	
T ₁ (30 cm x 7.5 cm)	3.5	5.24	6.4	8.1	10.3	
T ₂ (45 cm x 5 cm)	3.8	5.85	9.15	10.2	12.7	
T ₃ (45 cm x 10 cm)	5.2	10.85	18.25	21.45	24.15	
T ₄ (45 cm x 20 cm)	6.85	16.15	25.45	36.25	45.35	
T ₅ (45 cm x 30 cm)	7.1	17.75	27.21	37.95	47.4	
T ₆ (60 cm x 10 cm)	5.9	11.8	19.65	22.13	26.2	
T ₇ (60 cm x 20 cm)	6.1	14.56	22.16	32.5	41.45	
T ₈ (60 cm x 30 cm)	8.95	19.65	32.6	41.85	51.18	
SE. (m). ±	0.25	0.53	0.91	1.21	1.37	
CD @ 5%	NS	1.60	2.75	3.65	4.14	
G.M.	5.93	12.73	20.10	26.30	32.34	

Number of pods plant⁻¹

Planting geometry had a significant effect on pod formation at all reproductive stages (Table 5). Pod number increased progressively from 60 DAS to harvest, with wider spacings supporting greater pod development per plant.

At 60 DAS, T_8 (60 × 30 cm) produced the highest pods (65.45), significantly superior to all other treatments, followed by T_4 (54.35) and T_5 (54.27). The lowest counts were recorded in T_1 (10.4) and T_2 (11.25), indicating that dense planting restricted pod initiation.

Treatment	Number of pods per plant					
1 reaument	60 DAS	75 DAS	Harvest			
T ₁ (30 cm x 7.5 cm)	10.4	12.15	13.01			
T ₂ (45 cm x 5 cm)	11.25	13.65	14.1			
T ₃ (45 cm x 10 cm)	28.85	30.15	32.08			
T ₄ (45 cm x 20 cm)	54.35	56.4	58.85			
T ₅ (45 cm x 30 cm)	54.27	56.2	58.34			
T ₆ (60 cm x 10 cm)	28.54	30.1	32.45			
T ₇ (60 cm x 20 cm)	51.5	53.8	55.45			
T ₈ (60 cm x 30 cm)	65.45	67.16	69.89			
CD @ 5%	1.58	1.81	1.85			
SE. (m). ±	4.79	5.47	5.61			
SE (d)	38.07	39.95	41.77			

Table 5: Mean number of pods plant⁻¹ of soybean as influenced by crop geometry

At 75 DAS, T_8 (67.16) maintained its superiority, followed by T_4 , T_5 , and T_7 (53.8-56.4 pods), while T_1 (12.15) and T_2 (13.65) remained lowest. At harvest, T_8 (69.89) again recorded the maximum pods, followed by T_4 (58.85), T5 (58.34), and T_7 (55.45), whereas T_1 (13.01) produced the fewest. Overall, wider spacings (T_8 , T_4 , T_5 , T_7) consistently enhanced pod formation due to reduced interplant competition, improved light penetration, and better canopy aeration, while closer spacings (T_1 , T_2) limited reproductive growth. These findings emphasize that optimum planting geometry is essential for maximizing pod production and yield potential in soybean.

Conclusions

The treatment T_3 (45 cm \times 10 cm) emerged as the most efficient geometry for maximizing growth and yield without compromising plant growth or seed quality. It provided an optimal balance between plant population and resource availability, leading to superior performance in most growth and yield parameters. Therefore, under the agro-climatic conditions of Parbhani, district of M.S, adopting a spacing of 45 cm \times 10 cm is recommended for enhancing productivity and profitability in soybean cultivation. Further studies integrating spacing with nutrient and water management may offer additional insights for sustainable intensification.

References

- Board JE, Kahlon CS. Soybean yield formation: What controls it and how it can be improved. In: Board JE, editor. A comprehensive survey of international soybean research: Genetics, physiology, agronomy and nitrogen relationships. InTech; 2011. p. 1-36. doi:10.5772/24849.
- 2. De Bruin JL, Pedersen P. Effect of row spacing and seeding rate on soybean yield. *Agron J*. 2008;100(3):704-10.
- 3. Gandhi VP, Zhou ZY. Food demand and the food security challenge with rapid economic transformation in India. *Indian J Agric Econ.* 2014;69(1):1-17.
- 4. Hymowitz T. On the domestication of the soybean. *Econ Bot.* 1970;24(4):408-21. doi:10.1007/BF02860799.
- 5. Kumawat A, Meena RK, Meena BL, Yadav RS. Effect of plant geometry and nutrient management on growth and yield of soybean (Glycine max L.). *Asian J Soil Sci*. 2015;10(2):291-5.
- 6. Ministry of Agriculture and Farmers Welfare (MAFW). *Agricultural Statistics at a Glance 2023*. Government of India; 2023. Available from: https://agricoop.nic.in

- 7. Messina MJ. Legumes and soybeans: Overview of their nutritional profiles and health effects. *Am J Clin Nutr*. 1999;70(3 Suppl):439S-50S. doi:10.1093/ajcn/70.3.439s.
- 8. Nagalakshmi D, Reddy YR, Suryanarayana MA. Utilization of soybean and its byproducts in livestock and poultry feed. *Indian J Anim Nutr.* 2003;20(2):121-36.
- 9. Patel BT, Vyas KG, Chauhan HL. Effect of planting geometry and varieties on growth and yield of soybean (Glycine max L.). *Int J Chem Stud.* 2020;8(3):2593-6.
- 10. Pierik R, Visser EJW, De Kroon H, Voesenek LACJ. Ethylene is required in tobacco to successfully compete with proximate neighbours. *Plant Cell Environ*. 2004;27(5):593-601. doi:10.1111/j.1365-3040.2004.01175.x.
- 11. Rana KS, Sharma RA, Rathore SS. Effect of planting geometry and nutrient levels on productivity and quality of soybean (Glycine max L.) under rainfed conditions. *Indian J Agron*. 2014;59(1):135-8.
- 12. Rani U, Reddy KHP, Reddy PD, Rani YR. Soybean: A wonder crop of the 21st century. *Int J Curr Microbiol Appl Sci.* 2017;6(9):2060-70. doi:10.20546/ijcmas.2017.609.253.
- 13. Singh RK, Meena BL, Meena DS. Soybean revolution in India: A success story of partnerships in research and development. *Indian Res J Ext Educ*. 2013;13(1):94-9.
- 14. Singh RK, Verma SK, Meena RK, Kumar R. Influence of plant spacing on growth and yield of soybean. *J Pharmacogn Phytochem.* 2020;9(2):273-6.
- 15. Soybean Processors Association of India (SOPA). *SOPA Soybean Crop Survey Report* 2023. 2023. Available from: https://sopa.org
- Zhao D, Reddy KR, Kakani VG, Reddy VR. Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum. Eur J Agron. 2009;30(3):176-85. doi:10.1016/j.eja.2008.1.