

ISSN Print: 2664-844X
ISSN Online: 2664-8458
NAAS Rating (2025): 4.97
IJAFS 2025; 7(12): 459-464
www.agriculturaljournals.com
Received: 15-09-2025
Accepted: 19-10-2025

Choudkar AS
M.Sc. Scholar, Interfaculty
Department of Irrigation
Water Management, Mahatma
Phule Krishi Vidyapeeth,
Rahuri, Maharashtra, India

Kadam SA
Professor of Irrigation and
Drainage Engineering and
Head, Department of
Agricultural Engineering,
Mahatma Phule Krishi
Vidyapeeth, Rahuri,
Maharashtra, India

Bade AS
Research Associate (Plant
Protection), CoE-DTSPA,
Mahatma Phule Krishi
Vidyapeeth, Rahuri,
Maharashtra, India

Patil VS
Head, Interfaculty
Department of Irrigation
Water Management, Mahatma
Phule Krishi Vidyapeeth,
Rahuri, Maharashtra, India

Bhanage GB
Research Associate (FMPE),
CoE-DTSPA, Mahatma Phule
Krishi Vidyapeeth, Rahuri,
Maharashtra, India

Tayade NR
Research Associate (GPB),
CoE-DTSPA, Mahatma Phule
Krishi Vidyapeeth, Rahuri,
Maharashtra, India

Patil MR
Head, Department of
Statistics, Mahatma Phule
Krishi Vidyapeeth, Rahuri,
Maharashtra, India

Corresponding Author:
Choudkar AS
M.Sc. Scholar, Interfaculty
Department of Irrigation
Water Management, Mahatma
Phule Krishi Vidyapeeth,
Rahuri, Maharashtra, India

Impact of foliar application of nitrogen on growth and yield attributes in maize (*Zea mays*) through drone

Choudkar AS, Kadam SA, Bade AS, Patil VS, Bhanage GB, Tayade NR and Patil MR

DOI: <https://www.doi.org/10.33545/2664844X.2025.v7.i12f.1077>

Abstract

A field experiment was conducted at Climate Smart Research Block of Centre of Excellence on Digital Technologies for Climate Smart Agriculture (CoE-DTSPA), Mahatma Phule Krishi Vidyapeeth, Rahuri, during Kharif-2024 with to assess efficacy of foliar application of nitrogen on growth, yield attributes and cost economics in maize (*Zea mays*) through drone. The experiment was carried out in a Randomized Block Design with ten treatments replicated three times. A hexacopter drone with 10 L capacity was used for the foliar application of nitrogen as per the treatments. The results revealed that treatment T₇ with foliar application of conventional urea @ 1.0% + Micrograde II @ 0.5% at 30, 45 and 70 DAS recorded highest grain yield (69.09 q ha⁻¹). However, treatment T₉ (Foliar application of NU @ 2.5% + Micrograde II @ 0.5% at 30, 45 and 70 DAS) and treatment T₆ (Foliar application of conventional urea @ 2.5% at 30, 45 and 70 DAS) which recorded (66.67 q ha⁻¹) and (65.76 q ha⁻¹) grain yield, respectively and at par with treatment T₇. Treatment T₁ (100% GRDF) recorded highest stover yield (79.96 q ha⁻¹). However, treatment T₃ (Foliar application of conventional urea @ 1.0% at 30, 45 and 70 DAS) and treatment T₈ (Foliar application of NU @ 2.5% at 30, 45 and 70 DAS) were at par with treatment T₁ (100% GRDF) with (76.87 q ha⁻¹) and (76.71 q ha⁻¹) stover yield respectively. Treatment T₇ (Foliar application of conventional urea @ 1.0% + Micrograde II @ 0.5% at 30, 45 and 70 DAS) resulted into higher gross monetary return (₹ 171851.61 ha⁻¹), net monetary returns (₹ 77000.71 ha⁻¹), B:C ratio (1.81). However, treatment T₉ (Foliar application of NU @ 2.5% + Micrograde II @ 0.5% at 30, 45 and 70 DAS) was at par with T₇ and recorded gross monetary return (₹ 167099.63 ha⁻¹), net monetary returns (₹ 73415.78 ha⁻¹), B:C ratio (1.78).

Keywords: Maize, drone, foliar application, conventional urea, NU- Nano urea, Micrograde II

Introduction

Maize (*Zea mays* L.) is one of the most cultivated cereal crop globally and serves as a major source of calories and protein for more than a billion people. Taxonomically, it belongs to the family Poaceae, subfamily Panicoideae, with a chromosome number of 2n=20. Owing to its exceptional yield potential, maize is often regarded as the “queen of cereals” and a “miracle crop” (Ikramullah *et al.*, 2011) [9]. Globally, maize production has reached 1220.3 million metric tonnes, cultivated over 205.4 million hectares with an average productivity of 5.95 t ha⁻¹ (Anonymous, 2023) [2]. The United States (31.9%), China (23.7%), Brazil (10.8%), Argentina (3.4%), and India (3.1%) are the leading producers, placing India fifth in global maize production. In India, the maize-growing area during 2023-24 was 9.96 million hectares (Anonymous, 2024) [3], with Madhya Pradesh and Karnataka contributing the largest acreage. Karnataka ranks first in maize production (43.29 lakh tonnes), followed by Madhya Pradesh and Maharashtra. In Maharashtra, maize is cultivated over 0.92 million hectares with a production of 1.441 million tonnes and a productivity of 1.58 t ha⁻¹, which remains below the national average (Anonymous, 2024) [4]. Nitrogen is a critical nutrient that significantly influences maize growth, biomass accumulation, and grain yield. Application of nitrogen has been reported to enhance maize grain yield by 43-68% and biomass by 25-42% (Ogola *et al.*, 2002) [14]. Because nitrogen plays a central role in physiological and metabolic processes, its efficient and balanced application is essential for achieving optimal crop performance (Fathi and Zeidali, 2021) [8]. Foliar application of nutrients directly to plant foliage offers improved

nutrient uptake efficiency, particularly for macro- and micronutrients, when compared to soil application (Arif *et al.*, 2006; Ali *et al.*, 2008) [5, 1]. Recent technological advancements have enabled the use of Unmanned Aerial Vehicles (UAVs) or drones for precise foliar application. Drone-based spraying facilitates uniform application of water-soluble fertilizers, reduces labour dependence, and overcomes the limitations of manual spraying in tall crops like maize. It also minimizes chemical usage and enhances operational efficiency and sustainability (Kanisha *et al.*, 2022) [10]. Considering these advantages, the present study was undertaken to evaluate the impact of foliar application of nitrogen on growth and yield attributes in maize through drone.

Materials and Methods

Experimental Site

A field experiment was conducted at Climate Smart Research Block of Centre of Excellence on Digital Technologies for Climate Smart Agriculture (CoE-DTSPA), Mahatma Phule Krishi Vidyapeeth, Rahuri, during *Kharif* 2024 with 19.4733° N latitude and 74.6275° E longitude at an altitude of 567 m above mean sea level.

Experimental Design and Treatment Details

A field experiment was carried out in *Kharif*-2024. The experiment was laid out in Randomized Block Design (RBD) with 10 treatments and 3 replications, with gross plot size 66.00 m x 33.00 m and net plot size 10.00 m x 5.25 m. The maize variety Phule Champion developed by MPKV, Rahuri was taken as experimental material with spacing of

75 cm x 20 cm. The treatment details are as follows: T₁ - 100% GRDF, T₂ - Foliar application of conventional urea @ 0.5% at 30, 45 and 70 DAS, T₃ - Foliar application of conventional urea @ 1.0% at 30, 45 and 70 DAS, T₄ - Foliar application of conventional urea @ 1.5% at 30, 45 and 70 DAS, T₅ - Foliar application of conventional urea @ 2.0% at 30, 45 and 70 DAS, T₆ - Foliar application of conventional urea @ 2.5% at 30, 45 and 70 DAS, T₇ - Foliar application of conventional urea @ 1.0% + Micrograde II @ 0.5% at 30, 45 and 70 DAS, T₈ - Foliar application of NU @ 2.5% at 30, 45 and 70 DAS, T₉ - Foliar application of NU @ 1.0% + Micrograde II @ 0.5% at 30, 45 and 70 DAS, T₁₀ - Water spray at 30, 45 and 70 DAS through drone whereas 100% P₂O₅ : K₂O with FYM 10 t ha⁻¹ were common to all treatments.

Fertilizer Details

The fertilizers *viz.*, urea, contains 46% of N, SSP contains 16% P₂O₅ and MOP containing 60% K₂O, NU (20% N w/v), Micrograde II (0.5%) and FYM were applied as per treatment with 50% N, 100% P₂O₅ and K₂O and 10 tons FYM/ ha were applied as basal dose to each treatment and remaining 50% dose of nitrogen was applied only for treatment T₁ one month after sowing.

Technical parameters of spraying drone

A battery-operated hexacopter drone with a 10-litre tank capacity was used for the foliar application of nitrogen on the maize crop during the experiment. The technical parameters of the drone are given in Table 1.

Table 1: Technical parameters of the drone

Sr. No.	Classification	Parameters
1.	Dimensions (mm)	1800 X 1800 X 500
2.	Nozzle type	Flat fan
3.	Tank capacity (lit.)	10
4.	Battery capacity	16000mAh X 2 (50V)
5.	Spraying width (m)	4
6.	Flying height (m) above crop canopy	2
7.	Number of nozzles	4
8.	Drone Speed (m/s)	3.5

Result and Discussion

Growth Parameters

The growth parameters studied in the experiment, *viz.* plant height and cob placement were evaluated to assess the impact of foliar nitrogen application through drone on maize crop and are depicted in Table 2.

Plant Height

The plant height was significantly influenced by different treatments. T₁ with 100% GRDF recorded significantly highest plant height (222 cm) at harvest. Among the foliar applications, T₆ (Foliar application of conventional urea @ 2.5% at 30, 45 and 70 DAS through drone) showed notable plant height (212 cm). Treatment T₁₀ (50% N + 100% P₂O₅ and K₂O as a basal dose) recorded the lowest plant height (200 cm) at harvest. Similar trend of plant height was also recorded at 60, 75 and 90 DAS of maize crop. Comparable results on plant height were observed by Veeresh *et al.* (2024) [17] in finger millet and by Devkar *et al.* (2024) [6] in

maize, where application of 100% recommended dose of nitrogen (RDN) significantly increased plant height.

Height of Cob Placement

Cob placement height was measured from ground level to the point of first cob emergence using a metric scale on five randomly selected plants from each treatment. The highest cob placement height (115.80 cm) was recorded in treatment T₁ (100% GRDF) at 65 DAS followed by treatment T₅ (Foliar application of conventional urea @ 2.0% at 30, 45 and 70 DAS), treatment T₂ (Foliar application of conventional urea @ 0.5% at 30, 45 and 70 DAS), treatment T₇ (Foliar application of conventional urea @ 1.0% + Micrograde II @ 0.5% at 30, 45 and 70 DAS) and treatment T₆ (Foliar application of conventional urea @ 2.5% at 30, 45 and 70 DAS) and were statistically at par with treatment T₁ (100% GRDF) with 114.60 cm, 113.87 cm, 113.07 cm, 112.47 cm cob placement height respectively.

Table 2: Effect of foliar application of nitrogen through drones on height of maize crop

Tr. No.	Treatments	Plant height (cm)						
		15 DAS	30 DAS	45 DAS	60 DAS	75 DAS	90 DAS	At harvest
T ₁	100% General Recommended Dose of Fertilizer (GRDF)	14.53	27.20	65.73	155.93	213.00	218.00	222.00
T ₂	Foliar application of conventional urea @ 0.5% at 30, 45 and 70 DAS	14.47	27.47	59.33	147.87	195.33	200.33	206.33
T ₃	Foliar application of conventional urea @ 1.0% at 30, 45 and 70 DAS	15.40	28.73	59.40	142.40	198.67	203.60	209.22
T ₄	Foliar application of conventional urea @ 1.5% at 30, 45 and 70 DAS	15.20	27.67	62.73	147.47	195.33	200.67	204.67
T ₅	Foliar application of conventional urea @ 2.0% at 30, 45 and 70 DAS	16.27	30.00	66.40	146.00	202.00	205.67	211.00
T ₆	Foliar application of conventional urea @ 2.5% at 30, 45 and 70 DAS	15.67	29.40	64.53	150.27	201.00	206.00	212.00
T ₇	Foliar application of conventional urea @ 1.0% + Micrograde @ 0.5% at 30, 45 and 70 DAS	14.13	28.60	61.13	148.07	196.00	202.00	205.00
T ₈	Foliar application of NU @ 2.5% at 30, 45 and 70 DAS	15.93	29.87	63.07	148.73	199.67	207.00	209.00
T ₉	Foliar application of NU @ 2.5% + Micrograde II @ 0.5% at 30, 45 and 70 DAS	16.07	30.07	59.53	144.40	199.00	204.00	208.00
T ₁₀	Water spray at 30, 45 and 70 DAS through drone	15.53	28.40	57.13	134.80	189.67	195.00	200.00
	S.E.(m) ±	0.83	0.823	1.15	2.47	2.34	2.78	2.67
	C.D at 5%	N.S.	N.S.	3.32	7.35	6.96	8.27	7.93
	General mean	15.32	28.74	61.90	146.59	198.97	204.00	209.13

Yield Contributing Parameters

The data on yield contributing characters like number of cobs per plant, Number of grain rows per cob, Length of cob, Girth of cob, 1000 grain weight, Total weight of cob (without husk), Grain weight per cob affected by foliar application of nitrogen through drone is presented in Table 3.

Number of Cobs per Plant

The treatment T₇ (Foliar application of conventional urea @ 1.0% + Micrograde II @ 0.5% at 30, 45 and 70 DAS) recorded highest number of cobs per plant (1.4) which was significantly superior over rest of the treatments. The lowest number of cobs per plant (1.07) were recorded in treatment T₆ (Foliar application of conventional urea @ 2.5% at 30, 45 and 70 DAS) and treatment T₈ (Foliar application of NU @ 2.5% at 30, 45 and 70 DAS), respectively.

Number of Grain Rows per Cob

The effect of different treatments on the number of grain rows per cob was statistically non-significant. Treatment T₆ with foliar application of conventional urea @ 2.5% at 30, 45 and 70 DAS recorded highest mean value for number of grain rows per cob (16.13). Conversely, the lowest number of grain rows per cob (14.80) was observed under Treatment T₁₀, which involved water spray at 30, 45, and 70 DAS along with 50% nitrogen and full basal application of phosphorus and potassium.

Length of Cob

Treatment T₇ (foliar application of conventional urea @ 1.0% + Micrograde II @ 0.5% at 30, 45, and 70 DAS) produced the maximum cob length (21.06 cm) and was significantly superior to T₁, T₂, T₃, and T₁₀. Treatments T₆, T₄, T₈, T₅, and T₉ were statistically at par with T₇, recording cob lengths ranging from 19.63 to 20.43 cm. These results corroborate the findings of Ninama *et al.* (2023) ^[12], who reported enhanced cob length in maize with zinc application (30 kg ha⁻¹) combined with NU (4 ml L⁻¹). The minimum cob length (16.00 cm) was observed in T₁₀ (water spray at 30, 45, and 70 DAS + 50% N + full basal P and K).

Girth of Cob

Treatment T₉ (foliar application of NU @ 2.5% + Micrograde II @ 0.5% at 30, 45, and 70 DAS) recorded the

maximum cob girth (16.37 cm) and was significantly superior to T₁, T₂, T₃, T₄, T₅, T₈, and T₁₀. Treatments T₇ (urea @ 1.0% + Micrograde II @ 0.5%) and T₆ (urea @ 2.5%) were statistically at par with T₉, recording cob girths of 15.85 cm and 15.49 cm, respectively. These findings align with Arya (2024), who reported that application of 50% RDN with two sprays of 0.5% NU resulted in maximum ear head girth in pearl millet. The lowest cob girth (13.07 cm) was observed in T₁₀ (water spray + 50% N + full basal P and K).

1000 Grain Weight

Treatment T₇ with foliar application of conventional urea @ 1.0% + Micrograde II @ 0.5% at 30, 45 and 70 DAS recorded maximum 1000 grain weight (367.50 g) showing significant superiority over all other treatments. In contrast, the minimum 1000 grain weight (264.67 g) recorded in treatment T₁₀ (water spray at 30, 45, 70 DAS + 50% N + 100% P₂O₅ and K₂O as a basal dose).

Total Weight of Cob (Without Husk)

Treatment T₇ with foliar application of conventional urea @ 1.0% + Micrograde II @ 0.5% at 30, 45 and 70 DAS recorded maximum total weight of cob (242.63 g) which was significantly superior over rest of the treatments. In contrast, the minimum total weight of cob (189.10 g) recorded in treatment T₁₀ (water spray at 30, 45, 70 DAS + 50% N + 100% P₂O₅ and K₂O as a basal dose).

Grain Weight per Cob

Treatment T₇ (foliar application of conventional urea @ 1.0% + Micrograde II @ 0.5% at 30, 45, and 70 DAS) recorded the highest grain weight per cob (161.10 g), showing significant superiority over T₁, T₂, T₄, T₅, T₈, and T₁₀. Treatments T₆ (urea @ 2.5%), T₃ (urea @ 1.0%) and T₉ (NU @ 2.5% + Micrograde II @ 0.5%) were statistically at par with T₇, recording 158.73 g, 158.73 g, and 156.57 g grain weight per cob, respectively. These findings corroborate the results of Dhawne *et al.* (2023) ^[7], who reported maximum grain weight per panicle in rice with 50% RDN and two sprays of NU @ 3 ml. The lowest grain weight per cob (141.27 g) was observed in T₁₀ (water spray + 50% N + full basal P and K).

Table 3: Effect of foliar application of nitrogen through drones on yield contributing characters of maize

Tr. No.	Treatments	No. of cobs per plant	No. of grain rows per cob	Length of cob (cm)	Girth of cob (cm)	1000 grain weight (g)	Total weight of cob (without husk) (g)	Grain weight of cob (g)
T ₁	100% General Recommended Dose of Fertilizer (GRDF)	1.24	15.07	19.06	13.36	332.50	218.87	145.93
T ₂	Foliar application of conventional urea @ 0.5% at 30, 45 and 70 DAS	1.13	15.87	17.20	13.59	277.00	212.31	149.13
T ₃	Foliar application of conventional urea @ 1.0% at 30, 45 and 70 DAS	1.20	15.20	17.33	14.75	314.67	230.15	158.73
T ₄	Foliar application of conventional urea @ 1.5% at 30, 45 and 70 DAS	1.13	15.87	20.03	14.62	285.00	222.83	150.47
T ₅	Foliar application of conventional urea @ 2.0% at 30, 45 and 70 DAS	1.13	15.47	19.83	14.09	339.83	224.93	152.87
T ₆	Foliar application of conventional urea @ 2.5% at 30, 45 and 70 DAS	1.07	16.13	20.43	15.49	340.17	231.10	158.73
T ₇	Foliar application of conventional urea @ 1.0% + Micrograde @ 0.5% at 30, 45 and 70 DAS	1.40	15.47	21.06	15.85	367.50	242.63	161.10
T ₈	Foliar application of NU @ 2.5% at 30, 45 and 70 DAS	1.07	14.93	20.03	14.37	302.17	229.33	149.13
T ₉	Foliar application of NU @ 2.5% + Micrograde II @ 0.5% at 30, 45 and 70 DAS	1.20	15.60	19.63	16.37	321.00	234.27	156.57
T ₁₀	Water spray at 30, 45 and 70 DAS through drone	1.13	14.80	16.00	13.07	264.67	189.10	141.27
	S.E.(m) ±	0.05	0.56	0.62	0.54	2.97	1.81	2.74
	CD at 5%	0.15	N.S.	1.85	1.61	8.84	5.39	8.16
	General mean	1.18	15.44	19.36	14.61	314.41	223.55	152.39

Yield

The data on grain yield ($q\text{ ha}^{-1}$), stover yield ($q\text{ ha}^{-1}$) and the percentage increase (%) in these yield parameters as affected by the various treatments was depicted in table 4.

Grain Yield

Treatment T₇ (foliar application of conventional urea @ 1.0% + Micrograde II @ 0.5% at 30, 45 and 70 DAS) recorded the highest grain yield (69.09 q ha^{-1}) and was significantly superior over all the treatments. However, treatments T₉ (nano urea @ 2.5% + Micrograde II @ 0.5%) and T₆ (conventional urea @ 2.5%) with 66.67 q ha^{-1} and 65.76 q ha^{-1} yield, respectively were statistically found at par with T₇. The lowest grain yield (55.17 q ha^{-1}) was obtained in T₁₀ (water spray + 50% N + 100% P₂O₅ and K₂O as basal). Treatment T₇ (foliar application of conventional urea @ 1.0% + Micrograde II @ 0.5% at 30, 45 and 70 DAS) recorded the highest percent increase in grain yield (25.23%) over T₁₀. The lowest percent increase (9.40%) was observed under T₂ (foliar application of conventional urea @ 0.5% at 30, 45 and 70 DAS) over T₁₀. The higher yield under T₇ may be attributed to improved nutrient absorption and utilization through drone-assisted foliar delivery, which enhances cuticular penetration, ensures targeted application, and improves nutrient-use efficiency. The additional supply of micronutrients likely further supported physiological processes contributing to yield improvement. These findings align with the observations of Nirere *et al.* (2019) ^[13], who

reported significantly higher yield with foliar application of water-soluble fertilizers, as well as those of Samui *et al.* (2022) ^[16]. The results also concur with Ninama *et al.* (2023) ^[12], who reported yield enhancement with combined foliar application of zinc and nano urea.

Stover yield

Treatment T₁ (100% GRDF) recorded the highest stover yield (79.96 q ha^{-1}) and was significantly superior over all treatments. However, treatments T₃ (foliar application of conventional urea @ 1.0% at 30, 45 and 70 DAS) and T₈ (foliar application of NU @ 2.5% at the same intervals) recorded 76.87 q ha^{-1} and 76.71 q ha^{-1} , respectively and found statistically at par with T₁. The higher stover yield under these treatments may be attributed to greater nutrient absorption and allocation towards vegetative growth rather than reproductive development. Similar findings were reported by Kumar *et al.* (2024) ^[11] and Devekar *et al.* (2024) ^[6], who observed higher stover yield in maize with 100% RDF. The lowest stover yield (63.25 q ha^{-1}) was obtained in T₁₀ (water spray + 50% N + 100% P₂O₅ and K₂O as basal), likely due to insufficient nutrient supply. In terms of percent increase in yield over T₁₀, treatment T₃ recorded the highest improvement (21.53%), followed by T₈ (21.28%) and T₉ (17.69%). The lowest percent increase in yield (6.71%) was observed under T₂ (foliar application of conventional urea @ 0.5% at 30, 45 and 70 DAS).

Table 4: Effect of foliar application of nitrogen through drone on grain yield ($q\text{ ha}^{-1}$) and stover yield ($q\text{ ha}^{-1}$) of maize crop

Tr. No.	Treatments	Grain yield ($q\text{ ha}^{-1}$)	Stover yield ($q\text{ ha}^{-1}$)	Increase in the grain yield (%)	Increase in the stover yield (%)
T ₁	100% General Recommended Dose of Fertilizer (GRDF)	61.51	79.96	-	-
T ₂	Foliar application of conventional urea @ 0.5% at 30, 45 and 70 DAS	60.37	67.50	9.4	6.71
T ₃	Foliar application of conventional urea @ 1.0% at 30, 45 and 70 DAS	64.40	76.87	16.73	21.53
T ₄	Foliar application of conventional urea @ 1.5% at 30, 45 and 70 DAS	64.19	70.00	16.34	10.67
T ₅	Foliar application of conventional urea @ 2.0% at 30, 45 and 70 DAS	60.46	69.67	9.58	10.15
T ₆	Foliar application of conventional urea @ 2.5% at 30, 45 and 70 DAS	65.76	73.00	19.19	15.41
T ₇	Foliar application of conventional urea @ 1.0% + Micrograde @ 0.5% at 30, 45 and 70 DAS	69.09	72.93	25.23	15.30
T ₈	Foliar application of NU @ 2.5% at 30, 45 and 70 DAS	60.04	76.71	8.82	21.28
T ₉	Foliar application of NU @ 2.5% + Micrograde II @ 0.5% at 30, 45 and 70 DAS	66.67	74.44	20.84	17.69
T ₁₀	Water spray at 30, 45 and 70 DAS through drone	55.17	63.25	-	-
	S.E.(m) ±	1.18	1.55	0.89	1.32
	C.D at 5%	3.51	4.66	2.65	3.97
	General mean	62.76	72.57	12.61	11.71

Cost Economics

Table 5 represents cost of Cultivation (₹ ha^{-1}), gross monetary return (₹ ha^{-1}), net monetary return (₹ ha^{-1}) and benefit-cost ratio (B: C Ratio) under different treatments. Treatment T₇ (foliar application of conventional urea @ 1.0% + Micrograde II @ 0.5% at 30, 45 and 70 DAS) incurred the highest cultivation cost ($\text{₹ 94,850.90 ha}^{-1}$), followed by T₈ (foliar application of NU @ 2.5% at 30, 45 and 70 DAS) with $\text{₹ 94,824.80 ha}^{-1}$. The lowest cost of cultivation ($\text{₹ 87,061.09 ha}^{-1}$) was recorded in T₁₀ where only water spray at 30, 45 and 70 DAS with only half dose of N + 100% P₂O₅ and K₂O as basal resulted in the lowest input requirement.

Gross monetary return

Treatment T₇ (foliar application of conventional urea @ 1.0% + Micrograde II @ 0.5% at 30, 45 and 70 DAS) recorded the highest gross monetary return ($\text{₹ 171,851.61 ha}^{-1}$) and was significantly superior among all treatments. However, T₇ was statistically at par with T₉ (foliar

application of NU @ 2.5% + Micrograde II @ 0.5% at 30, 45 and 70 DAS), which recorded a gross monetary return of $\text{₹ 167,099.63 ha}^{-1}$. The lowest gross monetary return ($\text{₹ 138,692.25 ha}^{-1}$) was obtained under T₁₀ (water spray at 30, 45 and 70 DAS + 50% N + 100% P₂O₅ and K₂O as basal dose).

Net monetary return

Treatment T₇ (foliar application of conventional urea @ 1.0% + Micrograde II @ 0.5% at 30, 45 and 70 DAS) recorded the highest net monetary return ($\text{₹ 77,000.71 ha}^{-1}$) and was significantly superior among all treatments. Treatment T₉ (foliar application of NU @ 2.5% + Micrograde II @ 0.5% at the same intervals) was statistically at par with T₇, registering a net monetary return of $\text{₹ 73,415.78 ha}^{-1}$. The lowest net monetary return ($\text{₹ 51,664.49 ha}^{-1}$) was obtained under T₁₀ (water spray at 30, 45 and 60 DAS + 50% N + 100% P₂O₅ and K₂O as basal).

Table 5: Effect of foliar application of nitrogen through drone on economic of maize

Tr. No.	Treatments	Cost of Cultivation (₹ ha^{-1})	Gross Monetary Returns (₹ ha^{-1})	Net Monetary Returns (₹ ha^{-1})	B:C ratio
T ₁	100% General Recommended Dose of Fertilizer (GRDF)	92764.62	157009.67	64245.05	1.69
T ₂	Foliar application of conventional urea @ 0.5% at 30, 45 and 70 DAS	91540.86	153601.25	62060.39	1.67
T ₃	Foliar application of conventional urea @ 1.0% at 30, 45 and 70 DAS	93029.49	162277.91	69631.75	1.74
T ₄	Foliar application of conventional urea @ 1.5% at 30, 45 and 70 DAS	93030.45	160462.75	67465.63	1.72
T ₅	Foliar application of conventional urea @ 2.0% at 30, 45 and 70 DAS	91551.90	151828.34	60276.44	1.65
T ₆	Foliar application of conventional urea @ 2.5% at 30, 45 and 70 DAS	93541.39	164708.00	71166.61	1.76
T ₇	Foliar application of conventional urea @ 1.0% + Micrograde @ 0.5% at 30, 45 and 70 DAS	94850.90	171851.61	77000.71	1.81
T ₈	Foliar application of NU @ 2.5% at 30, 45 and 70 DAS	94824.80	152919.00	58094.20	1.61
T ₉	Foliar application of NU @ 2.5% + Micrograde II @ 0.5% at 30, 45 and 70 DAS	93683.85	167099.63	73415.78	1.78
T ₁₀	Water spray at 30, 45 and 70 DAS through drone	87061.09	138692.25	51664.49	1.59
	S.E.(m) ±	-	2299.42	1251.25	-
	C.D at 5%	-	6831.94	3717.65	-
	General mean	-	1581053	655623	-

B: C Ratio

A benefit-cost (B:C) ratio greater than 1 indicates economic profitability, while a value below 1 denotes economic loss; a ratio of exactly 1 implies no profit or loss. The B:C ratio of maize was influenced significantly by foliar application of nitrogen through drone at variable rates. Treatment T₇ (foliar application of conventional urea @ 1.0% + Micrograde II @ 0.5% at 30, 45 and 70 DAS) recorded the highest B:C ratio (1.81), followed by T₉ (NU @ 2.5% + Micrograde II @ 0.5%) with a ratio of 1.78. The lowest B:C ratio (1.59) was observed under T₁₀ (water spray at 30, 45 and 70 DAS + 50% N + 100% P₂O₅ and K₂O as basal). These findings are in close agreement with Rajesh *et al.* (2021), who reported higher net monetary returns and B:C ratio with 75% RDN + 100% P₂O₅ and K₂O along with foliar spray of nano urea @ 4 mL L⁻¹ and zinc @ 2 mL L⁻¹.

Conclusion

The study clearly demonstrates that foliar application of nitrogen through drone has a positive influence on growth and productivity of maize. Growth parameters, particularly plant height and cob placement, were significantly superior under T₁ (100% GRDF), indicating the effectiveness of adequate soil-applied nutrients in supporting vegetative development. Foliar nutrient application through drone showed pronounced effects on yield attributes and grain yield. Treatment T₇ (conventional urea @ 1.0% + Micrograde II @ 0.5% at 30, 45 and 70 DAS) produced the highest grain yield (69.09 q ha⁻¹), while treatments T₉ and T₆ recorded statistically comparable yields (66.67 q ha⁻¹ and 65.76 q ha⁻¹, respectively). Stover yield was highest under T₁ (79.96 q ha⁻¹), with treatments T₃ and T₈ performing at par. Economic analysis further highlighted the superiority of drone-assisted foliar nutrition. Treatment T₇ resulted in the maximum gross monetary return (₹ 171,851.61 ha⁻¹), net monetary return (₹ 77,000.71 ha⁻¹), and B:C ratio (1.81). Treatment T₉ remained statistically comparable, reinforcing the effectiveness of drone-based foliar application of nitrogen and micronutrients. Overall, the findings suggest that foliar application of conventional urea @ 1.0% + Micrograde II @ 0.5% at 30, 45 and 70 DAS through drone, along with a basal dose of 50% N (60 kg ha⁻¹) and 100% P₂O₅ (60 kg ha⁻¹) and K₂O (40 kg ha⁻¹), is a highly effective strategy for improving growth, yield, and economic returns in maize. The study underscores the potential of drone-assisted nutrient delivery as an efficient, precise, and sustainable alternative to traditional fertilization methods in modern maize cultivation.

References

- Ali S, Khan AR, Mairaj G, Arif M, Fida M, Bibi S. Assessment of different crop nutrients management practices for improvement of crop yield. Australian Journal of Crop Science. 2008;2(3):150-157.
- Anonymous. Food and Agriculture Organization of the United Nations [Internet]. 2023 [cited year not specified]. Available from: <http://www.fao.org>
- Anonymous. Agricultural and Processed Food Products Export Development Authority [Internet]. 2024 [cited year not specified]. Available from: <http://www.apeda.gov.in>
- Anonymous. Department of Agriculture, Government of Maharashtra [Internet]. 2024 [cited year not specified]. Available from: <http://www.krishi.maharashtra.gov.in>
- Arif M, Chohan MA, Ali S, Gul R, Khan S. Response of wheat to foliar application of nutrients. International Journal of Agriculture and Biology. 2006;1(4):30-34.
- Devekar MM, Kale KD, Mane MS, Khedkar DD. Effect of foliar spray of super nano urea on growth and economics of hybrid maize in inceptisols. International Journal of Research Publication and Reviews. 2024;5(12):4937-4944.
- Dhawne MN, Shamkuwar GR, Shamkuwar SG, Landge NH, Sable AD, Tinpayle AD. Influence of foliar applications of nano urea on morpho-physiological and yield parameters in rice (*Oryza sativa* L.). Biological Forum - An International Journal. 2023;15(11):548-553.
- Fathi A, Zeidali E. Conservation tillage and nitrogen fertilizer: a review of corn growth and yield and weed management. Central Asian Journal of Plant Science Innovation. 2021;1(3):121-142.
- Ikramullah, Hussain I, Noor M, Kausar M, Shah N, Khalil H, *et al.* Heterotic effects for yield and protein content in white quality protein maize. Sarhad Journal of Agriculture. 2011;27(3):403-409.
- Kanisha K, Jagadeeswaran R, Kumaraiperumal R, Ragunath K, Balaji K, Muthumanickam D, Pazhanivelan S. Impact of drone spraying of nutrients on growth and yield of maize crop. International Journal of Environment and Climate Change. 2022;12(11):274-282.
- Kumar AMR, Fathima PS, Yogananda SB, Sowmyalatha BS. Comparative evaluation of nano urea and urea foliar sprays on nutrient uptake and soil fertility in fodder maize (*Zea mays* L.) production. Journal of Scientific Research and Reports. 2024;30(5):939-946.
- Ninama J, Debbarma V, Bhakher R, Meena RK. Response of zinc and nano urea on growth and yield of maize (*Zea mays* L.). International Journal of Environment and Climate Change. 2023;13(9):1046-1052.
- Nirere D, Murthy K, Lalitha KN, Murukannappa BS, Murorunkwere F. Effect of foliar application of water soluble fertilizers on growth and yield of maize. Rwanda Journal of Agricultural Sciences. 2019;1(1):44-51.
- Ogola JBO, Wheeler TR, Harris PM. Effects of nitrogen and irrigation on water use of maize crops. Field Crops Research. 2002;78(2-3):105-117.
- Rajesh H, Yadahalli GH, Chittapur BM, Halepyati AS, Hiregoudar S. Growth, yield and economics of sweet corn (*Zea mays* L. saccarata) as influenced by foliar sprays of nano fertilisers. Journal of Farm Sciences. 2021;4:381-385.
- Samui S, Sagar L, Sankar T, Manohar A, Adhikary R, Maitra S, Praharaj S. Growth and productivity of rabi maize as influenced by foliar application of urea and nano-urea. Crop Research. 2022;57(3):136-140.
- Veeresh H, Ravi S, Srinivasa DK, Kumar A. Effect of nano urea on growth, yield and nutrient uptake of finger millet (*Eleusine coracana* L.). International Journal of Plant and Soil Science. 2024;36(9):660-667.