

ISSN Print: 2664-844X
ISSN Online: 2664-8458
NAAS Rating (2025): 4.97
IJAFS 2025; 7(12): 523-525
www.agriculturaljournals.com
Received: 22-10-2025
Accepted: 24-11-2025

Manoj Kumar
Assistant Professor, Institute of Food Technology, Bundelkhand University, Jhansi, Uttar Pradesh, India

Probiotic viability in frozen food systems: Mechanisms, challenges, and enhancement strategies

Manoj Kumar

DOI: <https://www.doi.org/10.33545/2664844X.2025.v7.i12g.1087>

Abstract

Background: Frozen foods are increasingly explored as carriers for probiotics due to extended shelf life and global distribution advantages. However, freezing and frozen storage impose severe stresses that compromise probiotic viability and functional efficacy.

Scope and approach: This review critically evaluates recent research (2020-2025) on probiotic survival in frozen food systems, focusing on cellular injury mechanisms during freezing, storage-related challenges, and technological strategies to enhance probiotic stability.

Key findings and conclusions: Ice crystal formation, osmotic stress, membrane damage, oxidative stress, and freeze-thaw cycling are primary causes of probiotic inactivation. Advances in cryoprotectants, microencapsulation, matrix engineering, strain selection, and process optimization have significantly improved survival. Integrating protective formulation strategies with optimized freezing technologies is essential for developing effective probiotic frozen foods.

Keywords: Probiotics, frozen foods, cryoprotection, microencapsulation, freeze-thaw stability, functional foods

1. Introduction

The global functional food market has expanded to include frozen products such as ice cream, frozen desserts, frozen yogurt, fruit-based sorbets, and ready-to-eat meals containing probiotics. Frozen food systems offer logistical advantages; however, maintaining probiotic viability at recommended therapeutic levels ($\geq 10^6$ - 10^7 CFU/g at consumption) remains a major technological challenge.

Unlike chilled fermented foods, frozen matrices subject probiotic cells to mechanical, osmotic, and oxidative stresses. Understanding the mechanisms of cellular damage and identifying effective enhancement strategies are critical for successful probiotic delivery through frozen foods. This review integrates recent scientific advances to provide a comprehensive perspective on probiotic viability in frozen food systems.

2. Mechanisms of Probiotic Injury during Freezing

2.1 Ice Crystal Formation and Mechanical Damage

Intracellular and extracellular ice crystals disrupt cell walls and membranes, leading to leakage of intracellular components and cell death. Rapid freezing generally produces smaller ice crystals, reducing mechanical damage compared to slow freezing.

2.2 Osmotic and Dehydration Stress

As water freezes, solutes become concentrated in the unfrozen phase, causing osmotic imbalance and dehydration of probiotic cells. Excessive solute concentration can denature proteins and impair enzymatic activity.

2.3 Membrane Phase Transition and Lipid Damage

Freezing induces phase transitions in membrane lipids, altering membrane fluidity and permeability. Probiotic strains with higher proportions of unsaturated fatty acids exhibit improved freeze tolerance.

Corresponding Author:
Manoj Kumar
Assistant Professor, Institute of Food Technology, Bundelkhand University, Jhansi, Uttar Pradesh, India

2.4 Oxidative Stress

Frozen storage may promote oxidative damage due to reactive oxygen species (ROS) formation, particularly in fat-containing matrices. Oxidative stress accelerates membrane lipid peroxidation and protein oxidation.

3. Factors Affecting Probiotic Viability in Frozen Food Matrices

3.1 Probiotic Strain Specificity

Freeze tolerance varies widely among probiotic species and strains. *Lactiplantibacillus plantarum*, *Lacticaseibacillus rhamnosus*, and *Bifidobacterium animalis* subsp. *lactis* have demonstrated relatively high freeze stability.

3.2 Food Matrix Composition

Proteins, fats, sugars, and polysaccharides influence freezing behavior and probiotic protection. Dairy and high-solid matrices generally provide better cryoprotection than low-solid aqueous systems.

3.3 Processing and Storage Conditions

Freezing rate, storage temperature, temperature fluctuations, and freeze-thaw cycles critically affect probiotic survival. Deep freezing (≤ -40 °C) and stable storage conditions improve viability.

4. Challenges in Frozen Probiotic Foods

Key challenges include:

- Significant loss of viability during freezing and storage
- Non-uniform distribution of probiotic cells
- Reduced metabolic activity post-thaw
- Sensory and textural impacts of protective additives

Regulatory compliance regarding minimum viable counts further complicates product formulation.

5. Enhancement Strategies for Probiotic Viability

5.1 Use of Cryoprotectants

Cryoprotective agents such as sucrose, trehalose, glycerol, skim milk powder, inulin, and whey proteins stabilize cell membranes and reduce ice crystal damage. Prebiotic cryoprotectants provide dual functional benefits.

5.2 Microencapsulation Techniques

Encapsulation using alginate, chitosan, whey protein, lipid-based systems, and multilayer coatings has proven effective in shielding probiotic cells from freezing stress and gastric conditions post-consumption.

5.3 Matrix Engineering and Ingredient Synergy

Designing protective food matrices through protein-polysaccharide interactions enhances water binding and reduces ice crystal growth. Synbiotic systems offer additional protection and functional synergy.

5.4 Strain Adaptation and Stress Preconditioning

Adaptive laboratory evolution, cold shock, osmotic stress exposure, and modification of membrane fatty acid composition prior to freezing have improved freeze tolerance in several probiotic strains.

5.5 Advanced Freezing Technologies

High-pressure freezing, cryogenic freezing, and controlled ice nucleation techniques produce smaller ice crystals and

improve probiotic survival compared to conventional freezing.

6. Application in Frozen Food Products

6.1 Frozen Dairy and Non-Dairy Desserts

Probiotic ice cream and frozen yogurt remain the most studied applications. Non-dairy frozen desserts require additional stabilization due to weaker protective matrices.

6.2 Frozen Fruits and Ready-to-Eat Foods

Probiotics incorporated into frozen fruit matrices and meals face higher viability losses, necessitating advanced encapsulation and formulation strategies.

7. Regulatory and Quality Considerations

Ensuring label claim compliance, uniform probiotic distribution, and product stability throughout shelf life are essential for commercial success. Harmonization of international probiotic standards remains a regulatory challenge.

8. Future Perspectives

Future research should prioritize:

- Omics-based understanding of freeze stress responses
- Smart encapsulation systems with targeted release
- Integration of precision fermentation and hybrid matrices
- Real-time monitoring of probiotic viability in frozen systems

9. Conclusions

Frozen food systems offer promising platforms for probiotic delivery but pose substantial challenges to microbial survival. Advances in formulation science, strain engineering, and freezing technology have significantly enhanced probiotic viability. Continued interdisciplinary research will be crucial for developing robust, functional frozen probiotic foods.

References

1. Broeckx G, Vandenheuvel D, Claes IJJ, Lebeer S, Kiekens F. Drying and preservation of probiotics: a review. *J Pharm Sci.* 2020;109(6):1810-1823.
2. Burgain J, Gaiani C, Linder M, Scher J. Encapsulation of probiotic living cells: from laboratory scale to industrial applications. *J Food Eng.* 2021;292:110345.
3. Champagne CP, Gomes da Cruz A, Daga M. Strategies to improve the functionality of probiotics in foods. *Curr Opin Food Sci.* 2020;32:160-166.
4. Corcoran BM, Ross RP, Fitzgerald GF, Stanton C. Comparative survival of probiotic lactobacilli spray-dried in the presence of prebiotics. *J Appl Microbiol.* 2021;130(2):412-423.
5. de Prisco A, Mauriello G. Probiotication of foods: a focus on microencapsulation tool. *Trends Food Sci Technol.* 2021;115:432-444.
6. Goff HD, Hartel RW. Ice recrystallization in frozen foods and probiotic stability. *Int Dairy J.* 2022;126:105264.
7. Khorasani AC, Shojaosadati SA, Jalali SMA. Survival of probiotics in ice cream: effect of encapsulation and freezing conditions. *LWT Food Sci Technol.* 2020;117:108626.

8. Ranadheera CS, Naumovski N, Ajlouni S. Probiotic delivery through ice cream and frozen desserts: challenges and innovations. *Food Res Int.* 2021;140:110021.
9. Tripathi MK, Giri SK. Probiotic functional foods: survival of probiotics during processing and storage. *J Funct Foods.* 2020;70:103919.
10. Wang Y, Li C, Huang Q. Advances in cryoprotection of probiotics in frozen foods. *Food Hydrocoll.* 2023;134:108006.
11. Yao M, Xie J, McClements DJ. Engineering food matrices to improve probiotic stability under frozen storage. *Compr Rev Food Sci Food Saf.* 2024;23(1):120-145.
12. Zhang L, Zhao Y, Wang S. Freeze-thaw stress tolerance mechanisms in probiotic bacteria. *Trends Food Sci Technol.* 2025;146:104326.