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Abstract 
Textiles have evolved from basic materials for clothing and protection to advanced fabrics offering 
multifunctional properties. With increasing demands for performance, comfort, and interactivity, the 
textile industry is transforming nanotechnology. Nanoparticles, with their unique physical and chemical 
properties at the nanoscale, are being integrated into textiles to impart enhanced functionalities such as 
antimicrobial activity, UV protection, self-cleaning, conductivity, and mechanical strength. This paper 
re-explores recent advancements in nanotechnology within the textile sector, emphasizing the 
incorporation of various nanoparticles—such as carbon nanotubes (CNTs), graphene, fullerenes, and 
metal/metal oxide nanoparticles (ZnO, TiO₂, Ag, CuO)—into both natural and synthetic fibers 
including cotton, silk, wool, nylon, and polyester. Techniques like dip-coating, pad-dry-cure, 
electrospinning, and layer-by-layer assembly are employed to achieve durable and functional nano-
enhanced fabrics. Highlighted innovations include CNT-based smart textiles for wearable electronics, 
graphene-infused fabrics for thermal management, and fullerene-modified cotton with ion-sensing 
capabilities. Additionally, ZnO-coated fabrics demonstrate significant antimicrobial efficacy and wash 
durability. The study also acknowledges organic nanomaterials and biopolymers such as chitosan for 
sustainable applications. While the potential of nanotechnology in textiles is vast, further efforts are 
needed to address integration, durability, and safety. This paper provides a comprehensive view to 
guide future developments in smart and high-performance textiles. 

 
Keywords: Nanotechnology, smart textiles, antimicrobial fabrics, functional nanoparticles 

 
Introduction 
Nanotechnology is emerging as a transformative force in the field of textile engineering, 
offering remarkable advancements in the performance and functionality of textile materials 
(Yetisen et al., 2016) [4]. Through the integration of nanomaterials and nanofibers into textile 
matrices, it is possible to significantly augment properties such as mechanical strength, 
chemical resistance, longevity, and multi functionality. These innovations have paved the 
way for next-generation textiles capable of self-cleaning, self-repairing, and real-time 
monitoring of physiological and environmental parameters. Textiles engineered to deliver 
such enhanced functionalities-ranging from resistance to water, oil, stains, odours, and 
chemicals to protection against ballistic threats, stabs, and extreme environmental conditions-
are classified as high-performance textiles (HPTs) (Loughlin and Paul, 2018) [49]. 
Nanomaterials, including nanoparticles and nanofibers, are increasingly being incorporated 
into textiles to elevate their performance and functional attributes. Defined by having at least 
one dimension within the 1 to 100 nanometre (nm) scale, these materials exhibit exceptional 
properties that differ markedly from those of their bulk counterparts. Owing to their high 
surface-area-to-volume ratio and distinctive physical, chemical, and biological behaviours at 
the nanoscale, nanomaterials impart superior characteristics to textiles, such as enhanced 
durability, responsiveness, and adaptability (Sawhney et al., 2008; Saleh and Gupta, 2016) [5, 

107]. 
The integration of nanotechnology into textiles holds immense importance and significance 
due to its potential to revolutionize the textile industry. Engineered nanoparticles with altered 
surface properties are used in the textile industry. A few examples of such nanoparticles 
include silica, fullerene, carbon nanotubes, gold, silver, iron oxide, titanium dioxide, zinc 
oxide, etc. (Ahmad et al., 2020; Göcek, 2019; Gowri et al., 2010) [45, 48, 96]. 
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 Nanoparticles can be synthesised using two principal 

strategies: the top-down and bottom-up approaches. These 

synthesis pathways can be implemented through physical, 

chemical, or biological methods (Shnoudeh et al., 2019; 

Jamkhande et al., 2019) [3, 83]. In the top-down method, 

larger structures or bulk materials are mechanically or 

chemically broken down into nanoscale particles. 

Conversely, the bottom-up approach involves the assembly 

of nanoparticles from atomic or molecular units, allowing 

precise control over particle formation. Among the various 

techniques available for synthesizing metal-based 

nanoparticles, biological or green synthesis has garnered 

increasing attention from researchers. This preference is 

attributed to several advantages, such as process simplicity, 

high yield, environmental sustainability, and enhanced 

biocompatibility of the resulting metal nanoparticles 

(Nasrollahzadeh et al., 2019) [70]. Consequently, a wide 

range of bio-resources-including metabolites derived from 

plants, microorganisms, and animals-have been extensively 

employed in the green synthesis of metal nanoparticles for 

diverse applications (Adelere et al., 2016; Akintayo et al., 

2020; Lateef et al., 2021; Elegbede et al., 2021; Adelere et 

al., 2021; Adebayo et al., 2021; Dutta and Das, 2021; 

Thakur et al., 2022; Nazir et al., 2020) [43, 35, 23, 52, 44, 23, 20, 71, 

92]. 

 

Comprehensive Classification of Nanomaterials 

A wide array of materials can be developed through 

nanotechnology; however, four specific categories have 

garnered considerable scientific and industrial interest due 

to their unique properties and broad application potential. 

 

1 Nano Finishing: It is an advanced surface modification 

technique that entails the application of colloidal solutions 

or nanoscale dispersions of functional materials onto textile 

substrates to enhance their performance characteristics 

(Ghosh et al., 2018) [34]. Unlike conventional finishing 

methods, nano finishing requires significantly smaller 

quantities of materials to achieve comparable or superior 

effects. This is primarily due to the exceptionally high 

surface area-to-volume ratio of nanoparticles, which 

promotes better adhesion and uniform distribution across the 

fabric surface. Notably, nano finishes preserve the original 

texture and aesthetic appeal of textiles, while offering 

superior durability and long-lasting functionality (Saleem 

and Zaidi, 2020) [99]. Moreover, nano finishing not only 

refines existing treatment processes but also enables the 

incorporation of novel functionalities such as antimicrobial 

activity, UV protection, or water repellency-that are often 

unattainable through traditional finishing techniques 

(Montazer, 2018) [75]. 

 

2. Nano Coating 

Nano coating refers to the deposition of an ultra-thin film-

typically less than 100 nanometres thick-onto the surface of 

a substrate to enhance existing properties or impart new 

functionalities (Joshi and Adak, 2019; Makhlouf et al., 

2011) [52, 72]. This advanced technique enables the 

development of textiles with superior attributes such as 

improved colour fastness, flame retardancy, resistance to 

water and oil, wrinkle resilience, and antimicrobial activity. 

In contrast, conventional textile coatings, which are often 

applied in micrometre to millimetre thicknesses, can 

significantly compromise the fabric’s tactile qualities, 

flexibility, and breathability by creating a dense, 

impermeable layer (Joshi et al., 2011) [52]. Nano coatings 

overcome these limitations by forming a uniform and 

transparent barrier that retains the original texture and 

comfort of the textile while delivering high-performance 

functionality.

 

 
 

3. Nano Fibres 

Nano fibres exhibit exceptional mechanical and structural 

properties when compared to conventional fibres, including 

greater stiffness, higher tensile strength, an extremely large 

surface-area-to-weight ratio, low density, and significant 

pore volume (Islam et al., 2019; Xue et al., 2017) [47, 120]. 

These unique attributes make nanofibers highly versatile 

and suitable for a broad spectrum of advanced applications. 

Typically defined as fibres with diameters of 100 

nanometres or less (Ramakrishna, 2005) [89], nanofibers are 

particularly distinguished by their ultra-fine structure, 

enhanced surface-area-to-volume ratio, minute pore sizes, 

and outstanding mechanical resilience (Huang et al., 2003) 
[42]. These characteristics position nanofibers as promising 

candidates in fields such as filtration, biomedical 

engineering, protective textiles, and energy storage. 
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4. Nano Composites 

Nanocomposite is a solid material composed of several 

phases where at least one of the phases has one, two or three 

dimensions in the nanometre size. Through the nanoscale 

phase process, the goal of synergy between different 

constituents is achieved (Kiesler, 2015) [57].

 

 

 
Table 1: Recent Advancements in Nanomaterial-Enhanced Fibres: Incorporation Methods, Functional Attributes, and Industry Applications 

 

Types of 

fibre 
Nanomaterials 

Incorporation 

method 
Attributes 

Applications in 

different industries 
Reference 

Cotton Silver nanoparticles Soaking method 
Dielectric, wave-absorbing, shielding, 

and electrically active properties 

Healthcare and 

manufacturing 

(Safdar et al., 2022; 

Jagadeshvaran and bose, 

2023) [98, 51] 

Cotton Zinc nanoparticles 
Pad-dry-fix 

technique 

Antibacterial, ultraviolet-protection, 

mechanical strength, and increased 

resistance 

Healthcare, 

manufacturing, and 

increased recovery 

(Abou et al., 2022; 

Mohammadipour et al., 

2023) [6, 73] 

Cotton 
Copper oxide 

nanoparticles 

Pad-dry-fix 

technique 

Antibacterial, fungus-resistant, 

ultraviolet blocking, and auto-cleaning 

Healthcare and 

manufacturing 
(Verma et al., 2023) [115] 

Cotton 
Titanium dioxide 

nanoparticles 

Dip and spin 

layering 
Antifungal 

Healthcare and 

manufacturing 

(Granados et al., 2021) 
[38] 

Silk Nano emulsion 

Continuous padding 

and batch 

exhaustion 

Antibacterial, fungus-resistant, 

mechanical strength, air permeability 
Healthcare 

(Morris and Murray 

2020; Xing et al., 2023) 
[78, 118] 

Silk Nano silica Soaking method 
Hydrophobicity, ultraviolet resistance, 

wrinkle resistance, and auto-cleaning 
Industrial 

(Mollick et al., 2023; 

Gao et al., 2020) [74, 32] 

Silk 
Platinum 

nanoparticles 
Soaking method 

Antibacterial, catalytic activity and 

dyeability 

Healthcare and 

manufacturing 

(Zou et al., 2018; 

Arumugam et al., 2024) 
[128, 10] 

Silk Gold nanoparticles 
Electro fibre 

spinning 
Wound dressing and healing 

Healthcare and cell 

scaffolding 

(Akturk et al., 2016; Zhu 

et al., 2020) [7, 127] 

Silk Cadmium telluride 
Sequential layering 

method 
Immunoglobulin detector 

Healthcare and 

biological sensing 

(Haroone et al., 2018) 
[40] 

Wool Silver nanoparticles Soaking method 

microbe-resistant, water-repellent, 

static-resistant, improved ultraviolet 

absorption 

Healthcare and 

manufacturing 
(Hassan, 2019) [41]. 
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Wool Bio nano mordant 
Ultrasonic-assisted 

synthesis 
microbe-resistant 

Healthcare and 

manufacturing 
(Pour et al., 2020) [86] 

Wool Zinc nanoparticles 
Pad-dry-fix 

technique 

Antibacterial, fungus-resistant, static-

resistant, and auto-cleaning 

Healthcare and 

manufacturing 
(Farooq et al., 2025) [29] 

Wool 
Selenium 

nanoparticles 
Soaking method 

Antibacterial and ultraviolet-blocking 

properties 

Healthcare and 

manufacturing 

(Razmkhah et al., 2021; 

Elmaaty et al., 2020) [90, 

27] 

Nylon 
Zinc oxide 

nanoparticles 

Sequential layering 

method 

Antibacterial, ultraviolet-protection 

stain-proof 

Healthcare and 

manufacturing 
(Ram, 2022) [88] 

Nylon 
Titanium dioxide 

nanoparticles 

Sequential layering 

method 

Antibacterial, ultraviolet-protection 

stain-proof 

Healthcare and 

manufacturing 
(Ram, 2022) [88] 

Polyester Nanocomposites 
Sequential layering 

method 
Anti-droplet and flame retardancy Industrial (Rui et al., 2021) [95] 

Polyester 
Titanium dioxide 

nanocomposites 

Sequential layering 

method 

Photocatalytic, solar light-activated 

self-decontaminating textile, and 

protection against chemical warfare 

agents 

optical field 
(Grandcolas et al., 2011) 

[39] 

 

Layer-by-Layer (LbL) Method  
The layer-by-layer (LbL) method builds nanolayer films by 
alternately depositing oppositely charged polyelectrolytes 
through electrostatic attraction. Each adsorption step, using 
solutions of a few mg/mL, is followed by rinsing to remove 
excess and prevent contamination. The outer layer enables 
further adsorption of the opposite charge. Multilayers may 
include polyions, charged molecules, or colloids, with layer 
times ranging from minutes to hours. Factors like ionic 
strength, temperature, and rinsing/drying time affect the 
film’s structure and thickness (Stawski, 2012) [103].  
The layer-by-layer method was used to create self-
assembled multilayers on cotton textiles by dip-coating. The 
particle-based coatings provided dual functions, modifying 
both the textile surface morphology and chemistry 
(Babaeipour et al., 2024) [12]. 
Silver nanoparticles were immobilized on nylon and silk 
using the layer-by-layer method. Silk showed better film 
growth and uniformity than nylon, confirmed by higher K/S 
values and SEM analysis. Both fibres exhibited 
antimicrobial activity, with silk achieving 80% and nylon 
50% bacterial reduction, highlighting the method’s potential 
for antimicrobial textiles (Dubas et al., 2006) [22]. 
 

Pad Dry Cure Method 
The pad-dry-cure technique is one of the most widely 
employed methods for the application of nanoparticles onto 
textile substrates, particularly for producing durable, long-
lasting functional fabrics. In this process, a formulation 
containing the crosslinking agent, catalyst, softener, and 

other auxiliaries is uniformly applied to the fabric surface, 
followed by a drying phase. The actual crosslinking reaction 
is then initiated during the subsequent curing stage, ensuring 
the stable fixation of nanoparticles onto the fibres. In a 
recent study, Lemo et al. (2017) utilized this technique to 
impregnate cotton fabric with silver nanoparticles (AgNPs) 
at concentrations of 10 and 20 parts per million (ppm), 
aiming to assess their antibacterial efficacy against 
Staphylococcus aureus. The treated fabrics exhibited 
remarkable antimicrobial performance, achieving bacterial 
reduction rates ranging from 98.86% to 99.94%. Similarly, 
Nadi et al. (2020) [80] engineered magnetically responsive 
cotton textiles using Fe₃O₄ (magnetite) nanoparticles 
synthesised through the reverse coprecipitation method. The 
nanoparticles were applied using the pad-dry-cure process. 
Characterisation via Vibrating Sample Magnetometry 
(VSM) confirmed the magnetic behaviour of the treated 
fabric, while Thermogravimetric Analysis (TGA) indicated 
enhanced thermal stability. Moreover, electrical 
conductivity assessments revealed improved conductive 
properties, emphasising the multifunctional capabilities of 
Fe₃O₄-functionalized cotton textiles. 
 

Electro Spinning  
Electrospinning is an innovative method for fibre production 
based on the use of electrostatic force to create charged 
threads of polymer solutions. Electrospinning shows great 
potential since it provides control of the size, porosity, and 
mechanical resistance of the fibres (Stramarkou et al., 2024) 
[104]. 

 
 Table 2: Recent developments in antimicrobial nano textiles: Nanomaterials, enhanced properties, and targeted microorganisms 

 

Types of 

fibre 
Nanomaterials Properties of nano textiles Targeted bacteria and fungi References 

Cotton Silver nanoparticles 
Fungus-inhibiting, microbial-

resistant 
S. aureus, E. coli, P. 

aeruginosa 
(Arif et al., 2015; Arenas et al., 2022) 

 [9, 8] 

Cotton Zinc nanoparticles 
Fungus inhibiting, microbial 

resistant 
S. aureus, E. coli 

(Nahhal et al., 2020; Roy et al., 2020) 
[25, 94] 

Cotton 
Copper oxide 
nanoparticles 

Fungus inhibiting, microbial 
resistant 

S. aureus, E. coli, P. 
fluorescens and B. subtilis 

(Román et al., 2020; Abou et al., 
2022) [25, 94] 

Cotton 
Titanium dioxide 

nanoparticles 
Fungus inhibiting, microbial 

resistant 
S. aureus, E. coli, P. 

aeruginosa, P. mirabilis 
(Naggar et al., 2022; Abou et al., 

2022) [28, 6] 

Silk Silver nanoparticle 
Fungus inhibiting, microbial 

resistant 
S. aureus, E. coli, P. 

aeruginosa 
(Khan et al., 2022) [56] 

Silk Copper nanoparticles 
Fungus inhibiting, microbial 

resistant 
S. aureus, E. coli, P. 

aeruginosa 
(Khan et al., 2024; Bhattacharjee et 

al., 2021) [55, 16] 

Silk 
Platinum 

nanoparticles 
Microbial resistant, catalytic 
activity and coloration ability 

E. coli (Zou et al., 2018) [128] 

Wool Silver nanoparticles 
Microbial resistant, water-

attracting and auto-purifying 
B. cereus, E. coli, P. 

aeruginosa, S. typhi and S. 
(Luceri, 2024; Singh et al., 2023; 
Pietrzak et al., 2016; Singh et al., 

https://www.agriculturaljournals.com/


 

~ 177 ~ 

International Journal of Agriculture and Food Science https://www.agriculturaljournals.com 

 
 
 aureus 2023) [69, 102, 85, 102] 

Wool Zinc nanoparticles 
Microbial resistant, fungus 

inhibiting, ultraviolet resistant, 
and auto-purifying 

S. aureus, E. coli 
(Mohammadipour et al., 2023; Singh 

et al., 2023) [73] 

 

(Arenas et al., 2022) [8] Revealed that silver nanoparticle-

carboxymethyl chitosan (AgNPs-CMC) nanocomposite was 

evaluated for antimicrobial properties on cotton fabric. It 

showed 100% antibacterial activity against E. coli and S. 

aureus, and strong antifungal effects against C. albicans and 

A. niger, suggesting potential for hospital garments to 

reduce infections. 

(Nahhal et al., 2020) [25] Revealed that ZnO-NPs were 

coated on cotton using ultrasound and stabilized with corn 

starch, enhancing nanoparticle adhesion and durability. A 

3% starch solution improved ZnO-NP retention by 53% 

after washing and boosted antibacterial activity. Further 

functionalization with AgNPs and curcumin enhanced 

antimicrobial performance against S. aureus and E. coli. 

CuO nanoparticles were green-synthesized using Ruellia 

tuberosa extract, avoiding toxic chemicals. The nanorods 

(avg. size 83.23 nm) showed strong antimicrobial activity 

against S. aureus, E. coli, and K. pneumoniae. When 

embedded in cotton, they exhibited bactericidal and 

photocatalytic properties, offering eco-friendly solutions for 

hospital and industrial use (Vasantharaj et al., 2019) [114]. 

(Khan et al. 2022) [56] Revealed that BioAgNP-propolis-

coated silk sutures exhibited potent antibacterial properties 

against E. coli and S. aureus. They were biocompatible 

using 3t3 fibroblast cells, it promoted cell proliferation in 

wound healing scratch assays. These sutures hold potential 

for improving infection control and accelerating healing in 

surgical wounds, making them promising for medical 

applications. 

Wool fabrics were functionalized with SiO₂, TiO₂, and Ag 

nanoparticles using a non-toxic method. Ag NPs provided 

antibacterial effects against Escherichia coli, SiO₂ enhanced 

hydrophilicity, and TiO₂ offered self-cleaning properties. 

Combined NPs gave optimal results-SiO₂ and Ag made 

wool super hydrophilic with strong antibacterial activity, 

while TiO₂-treated fabrics showed superior self-cleaning 

under sunlight (Mura et al., 2015). 

 

Recent advancements in nanomaterials used in High-

Performance Textiles 

Nanoparticles are defined as colloidal dispersions or solid 

particulates with sizes ranging from 10 to 1000 nanometers. 

These particles can be engineered to encapsulate, entrap, or 

attach drugs to their matrix, depending on the synthesis 

method. The resulting structures can take the form of 

nanospheres or nanocapsules. Nanocapsules are designed 

with a core cavity that houses the drug, which is surrounded 

by a distinctive polymeric membrane. In contrast, 

nanospheres are matrix systems where the drug is uniformly 

distributed throughout the particle. In recent advancements, 

biodegradable polymeric nanoparticles, particularly those 

coated with hydrophilic polymers such as poly (ethylene 

glycol) (PEG), have gained significant attention as 

promising drug delivery systems. Known for their "long-

circulating" properties, these particles can remain in 

circulation for extended periods, allowing targeted delivery 

to specific organs. Additionally, they serve as efficient 

carriers for DNA in gene therapy and can facilitate the 

delivery of proteins, peptides, and genes, making them 

versatile tools in medical applications (Kommareddy et al., 

2005; Lee and Kim, 2005; Langer, 2000; Bhadra et al., 

2002) [58, 64, 63, 15]. 

 

 
 

Carbon Nanomaterials  

The discovery of carbon nanoparticles (CNPs) dates back to 

the 1980s (Sgarma, 2010; Kroto et al., 1985) [59]. CNPs 

encompass a diverse array of carbon-based materials, which 

include amorphous carbon nanoparticles (such as ultrafine 

carbon particles, carbon nanoparticles, and carbon dots), 

sp²-hybridized carbon nanomaterials (including fullerenes, 

carbon nanotubes, carbon nanohorns, graphene, and 

graphene quantum dots), and nano diamonds (Chen and 

Haifang, 2016) [18]. Formed entirely from pure carbon, CNPs 

exhibit remarkable properties, such as exceptional stability, 

superior electrical and thermal conductivity, and outstanding 

mechanical attributes—including extreme stiffness, strength, 

and toughness. Additionally, they are highly biocompatible  

With minimal toxicity, making them ideal candidates for 

various biomedical applications. Due to their sp² 

hybridization, CNPs are also highly hydrophobic, further 

enhancing their functional versatility (Chaudhary, 2014) [19]. 

 

1.1 Carbon Nanotubes 

Carbon nanotubes (CNTs) are a class of nanoparticles 

characterized by cylindrical tubular structures with 

diameters at the nanoscale, formed by the rolling of 

graphene sheets. CNTs are typically classified into single-

walled carbon nanotubes (SWCNTs) and multi-walled 

carbon nanotubes (MWCNTs), based on the number of 

graphene layers (Eatemadi et al., 2014) [24]. The most 

commonly employed techniques for synthesizing carbon 

nanotubes include chemical vapour deposition (CVD), arc 
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 discharge, and pulsed laser ablation. In the CVD process, 

carbon-containing precursor gases such as carbon dioxide 

(CO₂), acetylene (C₂H₂), ethylene (C₂H₄), and other 

hydrocarbons are utilized. The process typically occurs at 

temperatures ranging from 350 to 1000 °C. Several 

parameters, including reaction time, temperature, catalyst 

particle size, and the type and flow rate of the reactive 

gases, significantly influence the growth and quality of the 

CNTs produced (Wang et al., 2019) [117]. 

In a study by Thanga kameshwaran and Santosh kumar  

(2014), it was found that cotton fabric coated with MWCNT 

ink exhibited enhanced electrical conductivity, mechanical 

strength, and thermal stability, making it an ideal candidate 

for smart textile applications. Multiple coating layers further 

improved the fabric's conductivity and abrasion resistance, 

and piezoelectric testing demonstrated its potential for 

energy storage. Although promising for integration into 

wearable electronics, further research is needed to evaluate 

the long-term effects of skin contact with MWCNT-coated 

fabrics. 

 

 

1.2 Graphene: Among the most extensively researched 

carbon nanoparticles (CNPs) is graphene, which serves 

as the fundamental structure for a variety of carbon 

allotropes, often referred to as graphenoids? These 

include nano rings, single-walled, double-walled, and 

multi-walled nanotubes, graphite, carbon fibres, and 

graphyne (Lu and Li, 2013; Tiwari et al., 2016) [68, 112]. 

Graphene’s high thermal and electrical conductivity makes 

it ideal for smart textiles in thermal management. It can be 

applied as fibre fillers or surface coatings, with scalability 

improving as costs drop. Challenges like durability and 

integration with current textile tech remain. Future 

opportunities lie in combining graphene with other 2D 

materials (Ge et al., 2022) [33] 

 

 

1.3 Fullerene 

C60 fullerene, or buckyball, is a carbon allotrope with a 

soccer ball-like structure formed by single and double bonds 

in a truncated icosahedron consisting of 12 pentagonal and 

20 hexagonal faces. It has a diameter of about 0.71 nm and a 

molecular weight of approximately 720 atomic mass 

units (Xu et al., 2020) [119]. Meanwhile, fullerene-C60 (C60) 

nanoparticles served as nano fillers due to the unique 

spherical structure with a nano sized diameter to reinforce 

the polymer matrix (Bai et al., 2017; Wang et al., 2019) [13, 

116]. Compared to CNTs and GNPs, the presence of C60 

nanoparticles improved both corrosion resistance and 

mechanical properties (Liu et al., 2016) [66]. 

(Zhang et al., 2021) revealed RGO/C60@CF fabric with ion 

sensing ability was developed using industrial methods. The 

material showed high sensitivity to ions due to fullerene’s 

dispersion interactions, even at low concentrations (1 

mmol/L). It remained effective after repeated bending, 

proving flexibility. This study supports future development 

of smart, flexible ion sensors.
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2. Inorganic Nanoparticles 
Inorganic nanoparticles are highly stable and hydrophilic 

when compared to organic nanomaterials (Paul and Sharma, 

2020) [84]. Inorganic nanoparticles do have intrinsic 

outstanding physicochemical properties (magnetic, thermal, 

optical, and catalytic performance) and therefore, these nano 

sized materials offer a sturdy framework where two or more 

dopants can be integrated to give multifunctional abilities 

(Liong et al., 2008; Zhou et al., 2020; Zhang et al., 2012; 

Zhang et al., 2013) [65,125,122,123]. 

 

2.1 Metallic Nanoparticles 

Noble metals such as gold, silver, and platinum, renowned 

for their beneficial effects on health, are frequently 

employed in the synthesis of metallic nanoparticles 

(Bhattacharya and Mukherjee, 2008) [17]. Currently, there is 

a growing focus among researchers on the development of 

metal nanoparticles, nanostructures, and nanomaterials due 

to their distinctive properties, which make them highly 

advantageous for various applications, including catalysis 

(Narayanan and Sayed, 2004) [81], polymer-based 

composites (Moura et al., 2017) [79], disease diagnosis and 

therapeutic treatments (Banerjee et al., 2017) [14], sensor 

technologies (Gomez-Romero, 2001; Shaikh et al., 2016) [36, 

100], and the labelling of optoelectronic media (Gracias et al., 

2000) [37]. 

New functionalities in textiles which incorporate metallic 

NPs include self-cleaning characteristics (ZnONPs and 

TiO2NPs) (Zhu et al., 2017; Tung et al., 2011) [126, 113], 

hydrophobicity (SiO2NPs and ZnONPs) (Yetisen et al., 

2016; Montazer, M.; Harifi, 2018; Rivero and Urrutia, 2015) 
[4, 75, 91], antibacterial properties (AgNPs, CuONPs, ZnONPs, 

and TiO2NPs) (Yetisen et al., 2016; Dastjerdi, R.; 

Montazer, et al., 2010; Zhang et al., 2016) [4, 21, 124] UV 

blocking activity (TiO2NPs, ZnONPs, CeO2NPs, and 

Al2O3NPs) (Yetisen et al., 2016; Montazer, M.; Harifi, 

2018) [4, 75], and electromagnetic wave shielding (Cu-, Ni-, 

Fe-, and Co-based NPs) (Montazer, M.; Harifi, 2018) [75], 

among others. 

 

2.2 Metal Oxide Nanoparticles  

Metal oxide nanoparticles (MONPs) are among the most 

widely utilized nano particles due to their exceptional 

properties, which include distinctive optical characteristics, 

enhanced ductility at elevated temperatures, cold welding 

tendencies, superparamagnetic behavior, and remarkable 

catalytic activity. These unique attributes have positioned 

metal oxide nanoparticles as promising solutions for 

tackling dye pollution challenges. Their specialized 

characteristics make them highly effective in addressing dye 

contamination in aqueous environments (Suhaimi et al., 

2022) [105]. 

In a study by Rajendra et al. (2010) [87], a straightforward 

method was developed to coat cotton fabric with nano-Zinc 

Oxide (ZnO), endowing it with robust antimicrobial 

properties. The nano-ZnO particles demonstrated 

significantly superior antibacterial activity, particularly 

against Staphylococcus aureus, when compared to bulk 

ZnO. Scanning Electron Microscopy (SEM) confirmed the 

successful entrapment of the nanoparticles within the fabric. 

The durability of the antimicrobial effect was found to be 

dependent on both the particle size and concentration. This 

technique holds substantial potential for enhancing hygiene-

related textiles. 

 

2.3 MXenes  

Two-dimensional (2D) nanomaterials have garnered 

significant attention due to their multifunctional properties, 

making them valuable across a broad spectrum of scientific 

disciplines, including functional electronics, catalysis, 

supercapacitors, batteries, and energy materials. The general 

formula for MXenes is expressed as Mn+1AXn, where M 

represents a transition metal, A denotes a main-group 

element (typically from groups IIIA or IVA), and X refers to 

carbon or nitrogen, with n being 1, 2, or 3 (Gong et al., 

2021; Ihsanullah, 2020) [54, 46]. 

Applications of MXenes-based materials in textiles are 

diverse and include energy storage textiles, flexible sensors, 

flexible displays, thermal management textiles, and health 

monitoring smart textiles (Ahmed and Sharma, 2022)[1]. 

 

4 Organic Nanoparticles  

Organic nanoparticles are diminutive particles composed of 

aggregated molecules or polymers. These materials have 

attracted considerable interest due to their simple fabrication 

processes and the diverse range of structures that can be 

synthesized (Liu et al., 2010) [67]. The use of organic 

nanomaterials in textiles aligns with the increasing demand 

for environmentally sustainable solutions. These nano 

particles offer essential benefits, such as enhanced resistance 

to environmental stressors, improved durability, and the 

ability to respond swiftly to external stimuli (Fernandes et 

al., 2022; Fu and Yao, 2001) [30, 31]. 

 

 
 

4.1 Micelles: Are specialized structures formed by the self-

assembly of lipid molecules into spherical monolayers. 

These lipid molecules are amphiphilic, meaning they 

possess both a hydrophilic (water-attracting) polar head 

group on the exterior and hydrophobic (water-repelling) 

fatty acid chains on the interior. This unique molecular 

structure allows micelles to encapsulate various substances, 
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 such as drugs, within their hydrophobic core, while their 

hydrophilic outer surface enables interaction with aqueous 

environments (Dakal et al., 2016; Singh et al., 2017) [108, 62]. 

In the field of nanomedicine, micelles are widely employed 

due to their ability to enhance the stability of encapsulated 

drugs, prevent premature dissociation, and provide 

controlled release. This capability significantly improves the 

pharmacokinetics of medications, allowing for a more 

targeted accumulation at specific sites in the body, thereby 

increasing their therapeutic effectiveness while reducing 

side effects. The unique properties of micelles, such as their 

ability to encapsulate both hydrophobic and hydrophilic 

substances, make them invaluable for delivering a wide 

range of therapeutic agents in medical applications. 

  

4.2 Liposomes: Are spherical structures composed of lipid 

bilayers, which form an internal aqueous core distinct from 

their external environment. These vesicles typically range in 

size from 80 to 300 nanometers. Notable for their 

remarkable properties, liposomes offer enhanced solubility, 

rapid metabolism, and a high degree of biocompatibility. 

Furthermore, they are non-toxic and biodegradable, making 

them particularly suitable for a variety of medical and 

pharmaceutical applications (Thakuria et al., 2021) [109]. 

 

4.3 Dendrimers 

Are highly branched polymeric nanoparticles (PNPs), 

characterized by a central core, multiple layers of repeating 

units known as Dendron’s, and an array of surface 

functional groups. These intricate structures allow 

dendrimers to offer a variety of useful properties, making 

them ideal for applications in fields like drug delivery and 

nanomedicine. As illustrated in Figure the diverse types of 

organic nanoparticles include (a) micelles, (b) liposomes, (c) 

dendrimers, and (d) solid lipid nanoparticles (Wilczewska et 

al., 2012) [11]

 

5. Chitosan 

Chitosan is a biopolymer derived from the deacetylation 

process of chitin, a naturally abundant polymer found in the 

shells of crustaceans. Due to its remarkable solubility, along 

with its unique chemical and biological properties, chitosan 

has become a versatile material with numerous applications 

in diverse fields. In addition to its biodegradability and 

biocompatibility, chitosan features a significant number of 

reactive amino side groups, which enable easy chemical 

modifications. This ability to modify its structure results in 

the creation of a wide range of beneficial derivatives, 

making chitosan highly adaptable for various industrial and 

biomedical uses (Elamri et al., 2023) [28]. 

Among biomaterials, chitosan stands out due to its 

outstanding attributes, such as biodegradability, 

biocompatibility, and antimicrobial activity. Furthermore, 

the compounds resulting from the degradation of chitosan 

are known to be non-toxic, non-allergenic, and non-

carcinogenic, making them highly suitable for use in 

sensitive applications, particularly in the medical and 

pharmaceutical sectors (Tian et al., 2020) [113]. 
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