

ISSN Print: 2664-844X ISSN Online: 2664-8458 NAAS Rating: 4.97 IJAFS 2025; 7(7): 306-309 www.agriculturaljournals.com Received: 19-05-2025

Accepted: 21-06-2025

YA Kavathiya

Vegetable Research Station, Junagadh Agricultural University, Junagadh, Gujarat, India

FY Patel

Vegetable Research Station, Junagadh Agricultural University, Junagadh, Gujarat, India

MC Dudhatra

Department of Entomology, College of Agriculture, Junagadh Agricultural University, Junagadh, Gujarat, India

Corresponding Author: YA Kavathiya Vegetable Research Stati

Vegetable Research Station, Junagadh Agricultural University, Junagadh, Gujarat, India

Efficacy of various insecticides and fungicides against thrips and major foliar diseases of garlic

YA Kavathiya, FY Patel and MC Dudhatra

DOI: https://www.doi.org/10.33545/2664844X.2025.v7.i7d.521

Abstract

A field study was conducted to evaluate the efficacy of various insecticides and fungicides against thrips and major foliar diseases of garlic (*Allium sativum* L.) at the Vegetable Research Station, Junagadh Agricultural University, Gujarat, during the Rabi seasons of 2021-22 to 2023-24. Among eight treatments, fipronil 5% SC @ 1 ml/l + sticker 1 ml/l recorded the lowest thrips population (2.09 thrips/plant) after 48 hours of spray and was statistically on par with the tank mix treatment of metiram 55% + pyraclostrobin 5% WG @ 2 g/l + cyantraniliprole 10.26 OD @ 0.9 ml/l + sticker (2.73 thrips/plant). The latter also exhibited the lowest intensity of purple blotch (7.13%) and stemphylium blight (11.44%) diseases and the highest marketable bulb yield (69.30 q/ha) and net return (₹. 2,59,166/ha). The highest ICBR (1:44.79) was observed with the fipronil-based treatment. These findings suggest that the tank mix treatment offers an effective and economical approach for integrated thrips and major foliar disease management in garlic cultivar GJG-5.

Keywords: Garlic, insecticide efficacy, fungicide efficacy, thrips tabaci, purple blotch, stemphylium blight, marketable yield

Introduction

Garlic (*Allium sativum* L.), a member of the family Alliaceae, is a significant bulb crop globally and ranks second in India after onion. The crop is valued for its medicinal and culinary properties, attributed largely to the organosulfur compound allicin^[1]. However, garlic production is often constrained by biotic stresses, notably thrips (*Thrips tabaci* Lindeman) and several foliar diseases such as purple blotch (*Alternaria porri*) and stemphylium blight (*Stemphylium vesicarium*). Thrips infest garlic during the bulb initiation stage, leading to substantial yield losse^[2], while purple blotch alone can result in yield reductions of up to 97%^[3]. This study investigates the comparative efficacy of insecticides and fungicides under field conditions to provide a cost-effective pest and disease management strategy.

Materials and Methods

Field experiments were conducted during the Rabi seasons of 2021-22 to 2023-24 at the Vegetable Research Station, Junagadh Agricultural University, using the garlic variety GJG-5. A Randomized Block Design with eight treatments (Table 1) and three replications was followed. Each plot measured 3.0 m \times 2.0 m with plant spacing of 15 cm \times 10 cm. Sprays were administered at 30, 45, 60, and 75 days after planting. Thrips population counts were recorded pre-treatment and 48 hours post-application. Disease severity was assessed weekly using the Percent Disease Index (PDI). Yield and economic analysis were performed at harvest.

Results and Discussion

Thrips Management: Pre-treatment thrips counts were statistically non-significant (Table 2). All treatments significantly reduced thrips populations post-application compared to the control. Fipronil 5% SC (T_6) recorded the lowest population (2.09 thrips/plant), followed by the tank mix treatment (T_3) with 2.73 thrips/plant. Control plots (T_8) had the highest infestation (20.81 thrips/plant).

Disease Management: The lowest purple blotch intensity (3.13% PDI) and Stemphylium blight intensity (11.44% PDI) were recorded in T_3 , followed by T_2 (Table 3). The control recorded the highest disease intensities (33.26% and 44.69%, respectively).

Yield and Economic Returns: T_3 resulted in the highest marketable bulb yield (69.30 q/ha) and net returns (₹. 2,59,166/ha) (Table 4). Although T6 recorded the highest ICBR (1:44.79), T_3 provided the best combination of thrips and major foliar diseases control with yield and economic viability.

The findings of the present study are corroborated by earlier research. [4] reported that cyantraniliprole 10.6% OD @ 120 g a.i./ha was highly effective against chilli thrips, achieving a 78.03% reduction in population compared to the untreated control. Similarly, [5] demonstrated that fipronil 5% SC @ 1.5 ml/L was the most effective treatment for garlic thrips, resulting in a low population density (5.58 thrips/plant) and the highest recorded bulb yield (166.83 q/ha). [6] also observed significantly reduced incidence of onion thrips with fipronil application.

Table 1: Treatment details of experiment

T_1	:	Cyantraniliprole 10.26 OD @ 0.9 ml/lit
T_2	:	Metiram 55% + Pyraclostrobin 5% WG @ 2 g/lit
T_3	:	(Metiram 55% + Pyraclostrobin 5% WG @ 2 g/lit) + (Cyantraniliprole 10.26 OD @ 0.9 ml/lit) - Tank mix
T_4	••	Azoxystrobin + Difenoconazole @ 1.25 ml/lit
T_5	:	(Azoxystrobin + Difenoconazole @ 1.25 ml/lit) + (Cyantraniliprole 10.26 OD @ 0.9 ml/lit) - Tank mix
T_6	••	Fipronil 5% SC @1 ml/lit (Control)
T_7	:	Propiconazole 25% EC @1 ml/lit (Control)
T_8	:	Control (Water Spray)
		* Sticker 1 ml/lit of water will be added in all treatments

Table 2: Effect of different treatments on thrips population recorded at one day before spray application (pre-count) and 48 hrs. after spray application (post-count) in garlic (GJG-5)

		Thrips population (Number / plant)														
Sr.	Treatment			Pre-Count					Post-Coun	t	48) 2.04(4.15) .51) 4.06(16.49) 05) 1.65(2.73) .27) 4.33(18.72) 43) 2.11(4.45) 42) 1.45(2.09) .18) 4.35(18.91)					
No	Treatment	1 st	2 nd	3 rd	4 th	Pooled	1 st	2 nd	3 rd	4 th	Doolad					
		Spray	Spray	Spray	Spray	Pooled	Spray	Spray	Spray Spray		rooled					
1.	T_1	3.59(13.04)*	4.02(16.17)	3.96(15.66)	4.17(17.38)	4.01(15.56)	1.71(2.93)	1.88(3.62)	1.87(3.56)	2.54(6.48)	2.04(4.15)					
2.	T_2	3.56(12.85)	4.10(16.85)	3.86(14.96)	4.13(17.01)	3.99(15.42)	3.85(15.16)	3.98(16.18)	3.98(16.10)	4.27(18.51)	4.06(16.49)					
3.	T ₃	3.55(12.77)	4.07(16.56)	4.01(16.12)	4.06(16.46)	4.00(15.48)	1.47(2.17)	1.56(2.44)	1.50(2.27)	1.97(4.05)	1.65(2.73)					
4.	T_4	3.53(12.58)	4.07(16.55)	3.94(15.56)	4.17(17.42)	4.00(15.53)	4.15(17.63)	4.27(18.59)	4.25(18.38)	4.48(20.27)	4.33(18.72)					
5.	T ₅	3.52(12.47)	4.10(16.86)	3.99(15.89)	4.15(17.23)	4.01(15.61)	1.86(3.44)	2.07(4.37)	1.88(3.54)	2.53(6.43)	2.11(4.45)					
6.	T ₆	3.51(12.36)	4.02(16.18)	3.96(15.69)	4.17(17.35)	3.99(15.39)	1.28(1.68)	1.31(1.72)	1.24(1.54)	1.82(3.42)	1.45(2.09)					
7.	T 7	3.63(13.29)	4.08(16.69)	3.81(14.51)	4.19(17.58)	4.00(15.52)	4.23(18.16)	4.33(19.04)	4.25(18.28)	4.47(20.18)	4.35(18.91)					
8.	T_8	3.65(13.50)	4.02(16.14)	3.98(15.84)	4.26(18.17)	4.05(15.91)	4.45(20.09)	4.58(21.24)	4.50(20.46)	4.62(21.47)	4.56(20.81)					
	S.Em.±	0.28	0.38	0.41	0.37	0.18	0.24	0.20	0.20	0.22	0.11					
	C.D. at 5%	NS	NS	NS	NS	NS	0.72	0.61	0.62	0.66	0.30					
	C.V.%	3.83	4.00	4.53	3.66	4.03	14.25	11.57	12.06	11.29	12.27					
	Y															
	S.Em.±					0.13					0.08					
	C.D. at 5%					0.36					0.22					
	YxT															
	S.Em.±					0.36					0.22					
	C.D. at 5%					NS					NS					

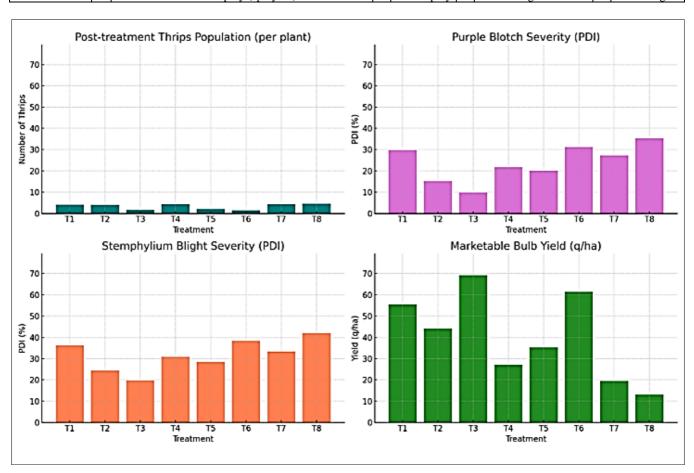
^{*} Square root transformation used

Pre-count: One day before impose/spray of treatments

Post-count: After 48 hrs. of spray application

Table 3: Effect of different treatments on purple blotch and Stemphylium blight diseases in garlic (GJG-5)

			Purple l	blotch		Stemphylium blight						
Sr.	Treatment		(Percent Dise	ease Index)		(Percent Disease Index)						
No.		Rabi-	Rabi-	Rabi-	Pooled	Rabi-	Rabi-	Rabi-	Pooled			
		2021-22	2022-23	2023-24	1 ooleu	2021-22	2022-23	2023-24	rooleu			
1.	T_1	29.71(24.56)**	30.57(25.86)	28.75(23.14)	29.68(24.52)	34.17(31.55)	35.33(33.44)	39.15(39.86)	36.22 (34.95)			
2.	T_2	16.69(8.25)	15.61(7.24)	13.26(5.26)	15.19(6.91)	23.24(15.57)	23.14(15.45)	26.80(20.32)	24.39(17.11)			
3.	T ₃	13.69(5.60)	8.27(2.07)	7.56(1.73)	9.84(3.13)	18.79(10.37)	18.75(10.33)	21.65(13.61)	19.73(11.44)			
4.	T ₄	23.94(16.46)	21.62(13.57)	19.81(11.48)	21.79(13.84)	30.40(25.61)	29.78(24.67)	32.58(29.00)	30.92(26.43)			
5.	T ₅	19.75(11.42)	21.49(13.42)	19.35(10.98)	20.20(11.94)	26.97(20.57)	27.04(20.66)	31.47(27.26)	28.49(22.83)			
6.	T_6	30.75(26.14)	31.80(27.76)	30.87(26.32)	31.14(26.74)	35.64(33.95)	37.06(36.32)	42.25(45.21)	38.32(38.49)			
7.	T ₇	29.58(24.36)	26.47(19.86)	25.97(19.17)	27.34(21.13)	30.74(26.13)	32.16(28.33)	37.40(36.89)	33.43(30.45)			
8.	T ₈	35.26(33.33)	36.14(34.78)	34.25(31.68)	35.22(33.26)	39.73(40.86)	41.30(43.56)	44.80(49.64)	41.94(44.69)			
	S. Em. ±	0.92	1.42	1.03	0.66	1.20	1.26	1.53	0.77			
	C.D. at 5%	2.79	4.31	3.12	1.88	3.64	3.83	4.63	2.20			
	C.V.%	8.49	13.61	10.98	11.19	8.13	8.22	8.08	8.19			
	Y											
	S. Em. ±				0.40				0.47			
	C.D. at 5%				1.15				1.35			


YxT				
S. Em. ±		1.14		1.34
C.D. at 5%		NS		NS

^{**}Arc sin transformation used

Table 4: Effect of different treatments on marketable bulb yield (q/ha) in garlic (GJG-5) and economics of different treatments against pests and diseases in garlic

		Marketable bulb Yield (q/ha)				Bulb Yield		Cost of		
Sr. No.	Treatment	Rabi-2021- 22	23 2023-24		Pooled	increased (kg/ha) over control	Additional income (₹/ha)	treatment with labour charge (₹/ha)	Net realization (₹)	ICBR
1.	T_1	57.50	56.67	52.22	55.46	4231	211574	15124	1,96,450	1:13.99
2.	T_2	45.83	44.17	42.50	44.17	3102	155093	8430	1,46,663	1:18.40
3.	T ₃	71.50	69.83	66.56	69.30	5615	280741	21575	2,59,166	1:13.01
4.	T ₄	29.17	26.67	25.33	27.06	1391	69537	10839	58,698	1:6.42
5.	T ₅	37.50	35.83	32.50	35.28	2213	110648	23983	86,665	1:4.61
6.	T ₆	63.33	61.67	59.17	61.39	4824	241204	5385	2,35,819	1:44.79
7.	T_7	20.83	19.17	18.33	19.44	630	31481	5730	25,751	1:5.49
8.	T_8	14.17	13.89	11.39	13.15	-	-	1	-	-
	S. Em. ±	1.97	1.98	2.21	1.19					
	C.D. at 5%	5.99	6.02	6.69	3.39					
	C.V.%	8.05	8.38	9.93	8.77					
	Y									
	S. Em. ±				0.73					
	C.D. at 5%			•	2.08					
	ΥxΤ									
	S. Em. ±			•	2.06					
	C.D. at 5%				NS					

Note:	1.	Quantity of spray solution for 1 ha area = 500 liter						
Cost of inputs:	1	Cost of respective pesticide:		Amount (₹)				
	1	Cyantraniliprole 10.60% OD	:	₹ 8625/lit	4	Fipronil 5% SC	:	₹ 1270/lit.
	2	Metiram 55% + Pyraclostrobin 5% WG	:	₹ 1650/kg	5	Propiconazole 25% EC		₹ 1500/lit
	3	Azoxystrobin 18.2% + Difenoconazole 11.4% SC	:	₹ 3925/lit	6	Sticker	:	₹ 320/lit.
	2	Labour charge	:					
	Α	Foliar spray (spray/ha)	:	₹ 500/spray	3	Price of garlic bulb	:	₹ 50/kg

In terms of disease management, ^[7] reported that difenoconazole achieved the greatest reduction in purple blotch severity (53.84%). Supporting this, ^[8] found that azoxystrobin 23 EC at 0.1% reduced purple blotch severity to a PDI of 20.74%, while propineb 50 WP at 0.2% followed with a PDI of 25.18%. Furthermore, ^[9] confirmed the superior field efficacy of difenoconazole (63.29%) and tebuconazole (58.6%) in suppressing purple blotch incidence when compared to untreated plots.

Phytotoxicity: No phytotoxic effects were observed in any treatment.

Conclusion

Four foliar applications of metiram 55% + pyraclostrobin 5% WG @ 20 g/10 L + cyantraniliprole 10.26% OD @ 9 ml/10 L + sticker @ 10 ml/10 L at 30, 45, 60, and 75 days after planting were found to be most effective and economical in managing thrips and major foliar diseases, thereby enhancing garlic yield.

Acknowledgments

The authors gratefully acknowledge Junagadh Agricultural University for funding and infrastructural support.

References

- 1. Dange DG, Chaudhary SK, Ninawe AP. Methodology for design and fabrication of garlic peeling machine: a review. Int J Sci Res Dev. 2015;2(11):126-129.
- 2. Patel PB, Patel JJ. Susceptibility of different garlic genotypes/cultivars to thrips (*Thrips tabaci* Lindeman). AGRES Int e-J. 2012;112:1-10.
- 3. Nanda S, Chand SK, Mandal P, Tripathy P, Joshi RK. Identification of novel source of resistance and differential response of *Allium* genotypes to purple blotch pathogen, *Alternaria porri* (Ellis). Plant Pathol J. 2016;32:519.
- 4. Layek A, Pramanik K, Das R, Nandi P, Debnath P. Assessing the bioefficacy of Cyantraniliprole 10.26% OD against fruit borer and thrips on chilli under field condition. Environ Conserv J. 2024;25(1):41-49.
- 5. Wayal CB, Aghav ST, Pawar DB. Efficacy of biopesticides and insecticides against garlic thrips. J Entomol Zool Stud. 2019;7(6):1255-1259.
- 6. Lawande KE, Khar A, Mahajan VP, Shrinivas SV, Shankar M, Singh RP. Onion and garlic research in India. J Hortic Sci. 2009;4(2):91-99.
- Yadav RK, Singh A, Jain S, Dhatt AS. Management of purple blotch complex of onion in Indian Punjab. Int J Appl Sci Biotechnol. 2017;5:454-465.
- 8. Arunakumara KT, Satyanarayana C. Management of purple blotch of garlic caused by *Alternaria porri*. J Rural Agric Res. 2018;18(1):1-5.
- 9. Chandra TG. Occurrence and management of purple blotch of garlic [MSc thesis]. Jammu (India): Sher-e-Kashmir Univ Agric Sci Technol; 2021.