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Abstract 

The sustainable management of fisheries faces growing challenges due to the vast expanse of the 

oceans, overfishing, Illegal, Unreported and Unregulated (IUU) fishing, and climate change impacts. 

Traditional methods of monitoring are often insufficient to manage the complexity of these issues. The 

integration of Artificial Intelligence (AI) and Remote Sensing (RS) provides transformative, large-

scale, real-time and cost-effective solutions for marine environment monitoring. RS tools like satellites 

and drones collect continuous data on oceanographic parameters such as Sea Surface Temperature 

(SST), chlorophyll-a and vessel activity. AI techniques including Machine Learning (ML), deep 

learning and computer vision process these complex data-sets to automate stock assessments, predict 

fish abundance, identify species and detect IUU fishing. Practical applications such as Global Fishing 

Watch and AI-powered fish counting highlight these benefits. Despite progress challenges remain in 

data quality, model transparency and capacity building. Future innovations such as eDNA monitoring 

and blockchain are expected to play a vital role in advancing sustainable fisheries management by 

supporting adaptive, data-driven strategies. 

 
Keywords: Artificial intelligence (AI), remote sensing (RS), machine learning (ML), deep learning, 

computer vision, illegal, unreported and unregulated (IUU) fishing, sea surface temperature (SST), 

chlorophyll-a, AI-powered fish counting, environmental DNA (eDNA), blockchain technology, Real-

time monitoring 

 

1. Introduction 

The ocean covering over 70% of the Earth's surface remains vast and largely under-

monitored posing significant challenges for effective fisheries resource management (Global 

Fishing Watch, 2023) [40]. Traditional methods of monitoring fish stocks are increasingly 

inadequate in addressing the complexities introduced by overfishing, Illegal, Unreported and 

Unregulated (IUU) fishing and the accelerating impacts of climate change (NOAA Fisheries, 

2023) [100]. These factors collectively disrupt marine ecosystems, deplete fish populations and 

obstruct sustainable management efforts. Overfishing removes fish at rates faster than they 

can naturally replenish, leading to declining biodiversity and altered ecosystem dynamics 

(World Wildlife Fund, 2023) [141]. IUU fishing change these challenges by degrading habitats 

and Undermining legal fisheries and causing substantial ecological and economic harm 

(International Maritime Organization, 2023) [56]. Additionally, climate change shifts fish 

stock distributions and productivity, challenging existing management frameworks and the 

livelihoods dependent on them (European Environment Agency, 2024) [34]. 

In response to these comprehensive challenges Artificial Intelligence (AI) and Remote 

Sensing (RS) technologies offer large-scale, real-time and cost-effective solutions for 

fisheries resource management. AI techniques including Machine Learning (ML), deep 

learning and computer vision can process large and different datasets from satellite images, 

underwater sensors and environmental monitoring to accurately detect and localize fish 

populations (Saleh et al., 2022) [117]. These AI-powered systems improve detection rates, 

reduce operational costs and enable adaptive management by analyzing dynamic underwater 

environments more efficiently than traditional methods. RS complements AI by providing 

large-scale, continuous environmental data critical for monitoring fish habitats, detecting  
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 illegal activities and assessing climate impacts (NOAA 

Fisheries, 2024) [101]. Together AI and RS facilitate 

enhanced surveillance, species classification, bycatch 

reduction and predictive modeling thereby supporting 

sustainable fisheries management and conservation goals in 

ocean. 

This integration of advanced technologies represents a 

transformative approach to overcoming the limitations of 

conventional fisheries management, ensuring ecological 

sustainability and economic viability in the face of growing 

environmental and anthropogenic pressures. 

 

2. Remote Sensing in Fisheries 

Remote Sensing (RS) in fisheries involves the collection of 

data from satellites, drones, aircraft or other platforms to 

monitor physical, chemical and biological parameters of the 

ocean that influence fish populations and habitats (Kerr & 

Ostrovsky, 2003; NASA, 2023) [63, 96]. It provides a 

powerful, large-scale monitoring capacity that enhances 

traditional in-situ methods by offering repeated, real-time 

and cost-effective monitoring over vast and often 

unreachable marine areas (Levin et al., 2018) [74]. 

 

2.1 Key applications of remote sensing in fisheries 

include 

2.1.1 Monitoring Fish Habitats: Remote Sensing (RS) 

measures environmental variables such as Sea Surface 

Temperature (SST), chlorophyll concentration, salinity and 

ocean currents, which affect fish distribution and abundance 

(Gower et al., 2019; McClain, 2009) [45, 84]. These 

parameters help identify and define marine fish habitats and 

potential fishing grounds by tracking dynamic 

oceanographic features like frontal boundaries, up-welling 

zones and circulation patterns (Mannocci et al., 2017; 

Robinson et al., 2017) [80, 114]. 

 

2.1.2 Tracking Fish Migration and Distribution: By 

analyzing environmental conditions, Remote Sensing (RS) 

supports understanding of fish migration routes and seasonal 

movements, aiding sustainable fisheries management and 

quota setting (Hazen et al., 2013; Palacios et al., 2006) [50, 

103]. RS provides valuable spatial and temporal data on 

oceanographic features such as Sea Surface Temperature 

(SST) and chlorophyll concentrations, which influence fish 

distribution and behavior (Scales et al., 2014) [122]. This 

information enhances the ability of managers to predict fish 

stock locations and improve harvest regulations (Suryan et 

al., 2012) [128]. 

 

2.1.3 Estimating Fish Stock Abundance: Remote sensing 

(RS) data on primary productivity and plankton blooms 

serve as key signals for assessing fish stock potential, 

enabling the forecasting of fishery yields and evaluation of 

stock health (Behrenfeld & Falkowski, 1997; 

Sathyendranath et al., 2004) [9, 121]. These biological 

indicators reflect the base of the marine food web, 

influencing fish distribution and abundance (Cushing, 1990) 

[27]. Satellite-derived chlorophyll measurements are widely 

used to monitor phytoplankton dynamics and predict fishery 

productivity (Mann & Lazier, 2013) [79]. 

 

2.1.4 Monitoring Fishing Activities: Using aerial drones 

and satellite-based technologies such as radar and 

Automatic Identification Systems (AIS), Remote Sensing 

(RS) enables the detection and mapping of fishing vessels 

and gear, supporting enforcement of regulations and efforts 

to combat Illegal, Unreported and Unregulated (IUU) 

fishing (McCauley et al., 2016; Miller et al., 2018) [83, 68]. 

These technologies provide near real-time vessel tracking 

and improve transparency in fisheries management, aiding 

global initiatives to protect marine resources (Kroodsma et 

al., 2018) [68]. 

 

2.1.5 Supporting Aquaculture Management: Remote 

Sensing (RS) help in monitoring water quality and 

environmental impacts of aquaculture operations, providing 

timely data for site selection and ongoing management 

(Handisyde et al., 2006; Kumar et al., 2020) [48, 71]. By 

analyzing parameters such as turbidity, chlorophyll 

concentration and temperature, RS supports sustainable 

aquaculture practices and helps mitigate negative ecological 

effects (Mitra et al., 2019) [90]. 

 

2.1.6 Assessing Ocean Productivity: By continuously 

monitoring key oceanographic indicators, Remote Sensing 

(RS) informs fisheries managers about changes in 

ecosystem productivity that influence fish populations and 

sustainability (Levin et al., 2018; McClain, 2009) [74, 84]. 

Parameters such as Sea Surface Temperature (SST), 

chlorophyll concentration and ocean circulation patterns 

provide critical data to predict shifts in fish habitats and 

support adaptive management strategies (Behrenfeld et al., 

2006; Polovina et al., 2008) [10]. 

 

2.2 Types of Remote Sensing Data 

Remote sensing data used in fisheries and ocean monitoring 

come from various sensor types, each suited to capturing 

specific oceanographic parameters: 

 

2.2.1. Optical Sensors (e.g., MODIS, Sentinel-2): These 

passive sensors detect sunlight reflected from the ocean 

surface and are primarily used for measuring ocean color 

and estimating phytoplankton concentrations which are 

critical indicators of marine productivity and fish habitat 

quality (IOCCG, 2000; Morel & Prieur, 1977) [57, 92]. Optical 

sensors provide high-resolution images but require clear sky 

and daylight conditions for optimal performance (Gower et 

al., 2008; Kahru & Mitchell, 2000) [44, 60]. 

 

2.2.2 Radar Sensors (e.g., Sentinel-1 Synthetic Aperture 

Radar - SAR): These active sensors emit microwave 

signals and measure their reflection, enabling vessel 

detection and ocean surface imaging regardless of weather 

or light conditions (Bentes et al., 2016; Migliaccio et al., 

2015) [13, 87]. Radar is particularly useful for detecting fishing 

vessels during cloudy weather or at night, thereby aiding in 

monitoring fishing activities and combating Illegal, 

Unreported and Unregulated (IUU) fishing (Park et al., 

2018; Greidanus & Alvarez, 2021) [105, 74]. Synthetic 

Aperture Radar (SAR) in particular has proven effective in 

identifying non-cooperative vessels and tracking suspicious 

maritime behavior in real time. 

 

2.2.3 Thermal Sensors: These sensors measure Sea Surface 

Temperature (SST) by detecting thermal infrared radiation 

emitted by the ocean surface. SST is a vital parameter 

influencing fish migration patterns, spawning grounds and 

overall marine ecosystem dynamics (Casey & Cornillon, 
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 1999; Block et al., 2011) [22]. Thermal data help monitor 

ocean temperature variations and detect thermal front zones 

that greatly influence fish distribution and feeding behavior 

(Belkin et al., 2009; Kilpatrick et al., 2001) [12, 64]. 

 

2.3 Applications in Fisheries 

Remote sensing has a wide range of applications in fisheries 

resource management, making use of environmental and 

vessel data to support sustainable practices: 

 

2.3.1 Predicting Fish Abundance Zones: Key 

oceanographic parameters such as Sea Surface Temperature 

(SST), chlorophyll-a concentration, salinity and turbidity are 

monitored via Remote Sensing (RS) to identify productive 

fishing areas. These parameters help to predict habitats of 

commercially important species like tuna and sardines, 

allowing fishermen to identify potential fishing zones more 

efficiently and reduce the time spent searching for fish, as 

well as fuel costs (Klemas, 2012; Nadeem et al., 2025; 

Selva Prakash et al., 2023) [65, 95, 123]. 

 

2.3.2 Harmful Algal Bloom (HAB) Detection and 

Monitoring: Remote Sensing (RS) technologies offer 

timely detection and tracking of Harmful Algal Blooms 

(HABs), which threaten marine ecosystems significantly 

and fisheries through oxygen depletion, toxin production 

and disruption of food webs (Anderson et al., 2017; 

Blondeau-Patissier et al., 2014) [4, 17]. Satellite-based sensors 

including ocean color images and thermal data enable 

continuous monitoring of surface waters detecting early 

indicators such as increased chlorophyll-a concentrations 

associated with algal proliferation (Hu et al., 2019) [54]. 

Early warnings derived from RS data support the mitigation 

of both ecological and economic impacts by improving the 

ability of managers to implement immediate and strategic 

responses, such as shellfish harvest closures or aquaculture 

advisories (Kudela et al., 2015; Shi & Wang, 2021) [69, 21]. 

 

2.3.3 Habitat Mapping: Remote Sensing (RS) technologies 

play a vital role in mapping and monitoring critical marine 

habitats such as coral reefs, mangroves and seagrass beds 

which serve as essential breeding and nursery grounds for 

many fish species (Kuenzer et al., 2011; Roelfsema et al., 

2018) [70, 115]. Accurate and frequent habitat mapping using 

satellite imagery and aerial sensors supports conservation 

efforts by tracking habitat health and changes over time, 

thereby contributing to sustainable fisheries management 

(Phinn et al., 2012; Hedley et al., 2016) [106, 52]. Maintaining 

the integrity of these habitats is crucial for fish population 

replenishment and overall ecosystem resilience (Waycott et 

al., 2009) [138]. 

 

2.3.4 Vessel Detection and Monitoring: Synthetic 

Aperture Radar (SAR) sensors and Automatic Identification 

Systems (AIS) provide the ability to detect fishing vessels 

irrespective of weather or light conditions, making them 

vital tools for continuous maritime monitoring (Bekkby et 

al., 2015; Kroodsma et al., 2018) [68, 11]. The all-weather, 

day-and-night imaging capability of Synthetic Aperture 

Radar (SAR) complements Automatic Identification System 

(AIS) data, which provides information on vessel locations 

and identities, thereby facilitating comprehensive 

monitoring and surveillance of fishing activities (Taconet et 

al., 2019) [130]. This combined capability is critical for 

enforcing fisheries regulations and combating Illegal, 

Unreported and Unregulated (IUU) fishing which threatens 

marine ecosystems and sustainable fisheries management 

worldwide (McCauley et al., 2016; Anderson et al., 2019) 

[83, 5]. 

 

2.3.5 Supporting Fisheries Management: By integrating 

environmental data and vessel monitoring systems remote 

sensing supports the development of dynamic fisheries 

management measures such as the designation of marine 

protected areas (MPAs), regulation of fishing effort and 

reduction of bycatch involving endangered species (Lewison 

et al., 2015; Maxwell et al., 2015) [75, 82]. This integration 

enables near-real-time spatial management by identifying 

critical habitats and adjusting fishing activities accordingly 

thus promoting ecosystem sustainability and biodiversity 

conservation (Boerder et al., 2018; Dunn et al., 2016) [18, 33]. 

 

3. Artificial Intelligence in Fisheries 

Artificial Intelligence (AI) is revolutionizing fisheries 

management through the application of advanced 

computational methods, including Machine Learning (ML), 

deep learning, computer vision and Natural Language 

Processing (NLP). These technologies facilitate the 

automation of complex tasks and enable the extraction of 

valuable insights from large and multifaceted data-sets, 

thereby enhancing decision-making and operational 

efficiency in the fisheries sector. 

 

3.1 Machine Learning (ML): Machine Learning (ML) 

algorithms are increasingly used in fisheries to analyze both 

historical and real-time data enabling the identification of 

trends, prediction of fish stock abundance and optimization 

of fishing efforts (Hazen et al., 2018; Queiroz et al., 2021) 

[51, 111]. These models continuously improve by learning 

from new data-sets thereby enhancing their accuracy in 

forecasting fish populations and responding to 

environmental changes such as shifts in ocean temperature 

or productivity (Kaplan et al., 2021; Muhling et al., 2017) 

[62, 93]. Such adaptive capabilities make ML tools valuable 

for dynamic and data-driven fisheries management. 

 

3.2 Deep Learning: A subset of Machine Learning (ML), 

deep learning employs neural networks to process 

unstructured data such as images and videos. In fisheries 

science, deep learning has shown significant promise in 

automating species identification, fish counting and 

behavioral analysis using underwater video or sonar data 

(Salman et al., 2016; Siddiqui et al., 2018) [118. 126]. These 

capabilities substantially reduce the reliance on manual 

labor and minimize human error, making monitoring more 

efficient and capable of expanding to larger operational 

scales (Gray et al., 2019; Villon et al., 2018) [46, 137]. This 

technology plays a crucial role in improving data quality 

and supporting evidence-based fisheries management. 

 

3.3 Computer Vision: A branch of Artificial Intelligence 

(AI) processes visual data collected by cameras, drones, or 

underwater sensors to detect and classify fish species, 

monitor fish health and assess catch composition (Siddiqui 

et al., 2018; Rathi et al., 2017) [126, 112]. These systems 

enhance sustainable fishing by enabling real-time 

monitoring of bycatch and adherence to fishing regulations 

(Allken et al., 2019) [3]. By automating visual inspections 
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 computer vision reduces observer bias and increases the 

efficiency and accuracy of fisheries assessments (Villon et 

al., 2018) [137]. 

 

3.4 Natural Language Processing (NLP): Natural 

Language Processing (NLP) techniques are increasingly 

applied in fisheries science to analyze large volumes of 

unstructured textual data, including fisheries reports, 

scientific literature and regulatory documents. These 

techniques enable automated extraction of relevant 

information detection of policy changes and synthesis of 

knowledge to support decision-making processes (Arvor et 

al., 2020; da Silva et al., 2021) [7, 28]. By structuring and 

interpreting complex textual content, NLP enhances the 

ability of fisheries managers to stay informed about 

regulatory shifts, scientific developments and stakeholder 

communications (Bosch et al., 2023) [20]. 

 

3.5 Applications in Fisheries 

3.5.1 Fisheries Stock Assessment 

Artificial Intelligence (AI) and machine learning (ML) are 

increasingly applied to fisheries stock assessment to 

improve the accuracy and timeliness of forecasting fish 

stock abundance. These approaches leverage environmental 

data and historical catch records to build predictive models 

that support sustainable fisheries management. 

 

3.5.1.1 Forecasting Stock Abundance: Artificial 

Intelligence (AI) models utilize environmental variables 

such as Sea Surface Temperature (SST), salinity and 

chlorophyll-a concentrations in combination with fishery 

catch data to predict vital stock parameters, including 

recruitment and spawning stock biomass. These predictive 

capabilities enable fisheries managers to anticipate 

population fluctuations and adjust quotas or management 

strategies proactively (Asch et al., 2019; Frazão Santos et 

al., 2020) [8, 36]. By utilizing historical and real-time data, AI-

driven forecasting supports adaptive management 

approaches that are more responsive to climate variability 

and ecosystem dynamics (Muhling et al., 2017) [94]. 

 

3.5.1.2 Hybrid Modeling Approaches: Recent research has 

introduced hybrid modeling approaches that integrate 

classical statistical stock assessment methods with 

supervised Machine Learning (ML) techniques, such as 

gradient boosted trees. In these frameworks the traditional 

model provides a baseline estimate of stock parameters, 

while the ML model applies subsequent corrections to 

improve forecast accuracy. This approach is particularly 

effective in complex and rapidly changing ecosystems 

influenced by climate change and anthropogenic stressors 

(Bozhi et al., 2021; Free et al., 2019) [21, 37]. Hybrid models 

strengthen the resilience and adaptability of stock 

predictions, making them more accurate tools for fisheries 

management (Zhou et al., 2023) [145]. 

 

3.5.1.3 Learning from Logbook and Sensor Data: 

Artificial Intelligence (AI) models are increasingly trained 

on extensive and diverse data-sets, including fishery 

logbooks, sensor outputs and scientific survey data. This 

data-driven approach enhances the ability to detect 

nonlinear patterns and complex relationships in stock 

dynamics that traditional statistical models may overlook 

(Hazen et al., 2018; Xu et al., 2021) [51, 143]. By utilizing 

large-scale, multi-source data, AI contributes to more 

accurate assessments and forecasts of fish population trends, 

thereby improving the foundation for ecosystem-based 

fisheries management (Tzanopoulos et al., 2022) [135]. 

 

3.5.2 Monitoring and Surveillance 

Monitoring and surveillance in fisheries have been 

significantly enhanced by integrating vessel tracking 

technologies with Artificial Intelligence (AI) and Machine 

Learning (ML) techniques: 

 

3.5.2.1 Automatic Identification System (AIS) + AI: AIS 

transponders, mandatory on commercial vessels over 300 

tons, continuously transmit vessel identity, position, speed 

and course data. AI algorithms analyze this real-time data to 

track vessel behavior, detect suspicious or anomalous 

activities and identify potential Illegal, Unreported and 

Unregulated (IUU) fishing operations. This combination 

enables authorities to monitor fishing fleets effectively, 

enforce regulations and ensure compliance with quotas even 

in vast and remote ocean areas (McDonald et al., 2019; 

Taconet, Kroodsma, & Fernandes, 2019; Kroodsma et al., 

2018) [85, 68, 130]. 

 

3.5.2.2 Vessel Monitoring System (VMS) + Machine 

Learning (ML): Vessel Monitoring Systems (VMS), 

similar to the Automatic Identification System (AIS) but 

often used specifically for fisheries management, provide 

positional data that Machine Learning (ML) models process 

to detect patterns indicative of Illegal, Unreported and 

Unregulated (IUU) fishing. ML techniques cluster and 

classify vessel movement behaviors, flagging unusual routes 

and entry into restricted zones, thereby enhancing 

surveillance and enforcement capabilities (Smith et al., 

2017; Kroodsma et al., 2018; McDonald et al., 2019) [127,85, 

68]. 

 

3.5.3 Species Detection and Identification 

Artificial Intelligence (AI) has revolutionized species 

detection and identification in fisheries through advanced 

data analysis and imaging technologies: 

 

3.5.3.1 AI Models for Fish Species Identification 

Underwater Cameras and Sonar Imaging: Artificial 

Intelligence (AI) models, particularly those based on deep 

learning and computer vision, are trained on large data-sets 

of underwater images and sonar scans to accurately identify 

fish species. These models can distinguish between species 

even in complex underwater environments, enabling precise 

monitoring of biodiversity, population dynamics and fish 

behavior (Marini et al., 2018; Salman et al., 2019) [81, 119]. 

Automated species identification reduces the need for 

manual sorting and expert intervention, accelerates data 

processing, and improves the accuracy and consistency of 

species records factors critical for stock assessments and 

ecological studies (Xu & Matzner, 2018; Siddiqui et al., 

2018) [126, 144]. 

 

3.5.3.2 Drones Combined with Computer Vision 

Monitoring Aquaculture Pens: Drones equipped with 

high-resolution cameras and AI-powered computer vision 

algorithms are increasingly used in aquaculture to monitor 

fish health, population density and behavior. These systems 

enable real-time detection of anomalies such as abnormal 
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 swimming patterns, early signs of disease, or changes in 

biomass distribution, allowing for timely interventions 

(Nezami et al., 2021; Liu et al., 2020) [99, 77]. By optimizing 

feeding strategies and reducing the risk of escapes, AI-

integrated drones enhance productivity, bio-security and 

sustainability in aquaculture operations (Qin et al., 2021; 

Nasirian et al., 2023) [109, 97]. 

 

3.5.3.3 Marine Protected Areas (MPAs): Drones provide 

efficient aerial surveillance of Marine Protected Areas 

(MPAs), employing computer vision technologies to detect 

and identify fish species, marine mammals and habitat 

conditions. These capabilities contribute to biodiversity 

assessments and habitat protection by enabling continuous, 

non-invasive monitoring over large and often inaccessible 

areas (Hodgson et al., 2016; Johnston, 2019) [53, 59]. 

Moreover, drones support enforcement efforts by detecting 

unauthorized fishing activities and vessel presence in 

restricted zones, enhancing compliance with conservation 

regulations (Chabot & Bird, 2015; Sardà-Palomera et al., 

2012) [23, 120]. 

 

3.6 Key Case Studies 

Key case studies demonstrate how Artificial Intelligence 

(AI) and remote sensing technologies are transforming 

fisheries resource management: 

 

3.6.1 Global Fishing Watch: Global Fishing Watch (GFW) 

represents a pioneering initiative that leverages satellite data 

and advanced machine learning to monitor global fishing 

activities in near real-time. By processing over 40 billion 

Automatic Identification System (AIS) messages from more 

than 2,00,000 vessels daily, GFW's algorithms classify 

vessel behaviors, identify fishing gear types and detect 

fishing locations. This enables the identification of potential 

Illegal, Unreported and Unregulated (IUU) fishing 

operations, enhancing transparency and supporting 

enforcement efforts worldwide (Global Fishing Watch, 

2018; Google Cloud, 2018) [41, 42]. The platform offers a 

publicly accessible, interactive map that aids in sustainable 

fisheries management by providing stakeholders with 

actionable insights into fishing patterns and compliance 

(Global Fishing Watch, 2018) [41]. 

 

3.6.2 IBM Watson & World Wildlife Fund (WWF): 

Leveraging AI, these organizations analyze oceanographic 

conditions to advise on sustainable fishing practices. By 

integrating environmental data with AI-driven predictive 

models, they provide actionable insights to optimize fishing 

efforts, reduce bycatch, and adapt to changing marine 

ecosystems, thereby promoting ecosystem-based fisheries 

management. 

 

3.6.3 Deep Learning for Automatic Fish Counting in 

Aquaculture: Advanced deep learning models, particularly 

Convolutional Neural Networks (CNNs), have been 

developed to automatically count and classify fish within 

aquaculture cages using underwater imagery. This 

automation improves monitoring efficiency, reduces labor 

costs, and enhances stock assessments by providing 

accurate, real-time data on fish populations and health 

within farming operations. 

4. Integration of AI and RS for Holistic Management 

Combining Remote Sensing (RS) and Artificial Intelligence 

(AI) enables a holistic, efficient and adaptive approach to 

fisheries resource management by integrating large-scale 

environmental monitoring with intelligent data analysis and 

decision support. 

 

4.1 Real-time Ecosystem Monitoring 

Remote sensing provides continuous, wide-area coverage of 

critical oceanographic parameters such as Sea Surface 

Temperature (SST), chlorophyll-a concentration, salinity 

and turbidity, which are essential indicators of ecosystem 

health and fish habitat suitability (Hu et al., 2019; 

Blondeau-Patissier et al., 2014) [54, 17]. These data-sets 

collected via satellites and other remote platforms, offer 

valuable temporal and spatial insights into marine 

environments. Artificial Intelligence (AI) enhances this 

capability by processing vast and complex remote sensing 

data in real time, detecting patterns and anomalies that may 

indicate shifts in fish populations or emerging 

environmental stressors (Xiao et al., 2022; Misra et al., 

2021) [142, 89]. The integration of AI and remote sensing 

enables near-instantaneous, high-resolution monitoring of 

marine ecosystems, far surpassing the scope and efficiency 

of traditional observation methods (Huang et al., 2020) [55]. 

 

4.2 Predictive Analytics for Adaptive Fisheries 

Management 

Artificial Intelligence (AI) models trained on historical and 

real-time Remote Sensing (RS) data can forecast fish stock 

abundance, migration routes, and habitat suitability, 

supporting data-driven fisheries management. Machine 

learning algorithms, for instance, analyze Sea Surface 

Temperature (SST) and chlorophyll-a concentration maps 

derived from satellite imagery to predict potential fish 

aggregation zones or hotspots (Hazen et al., 2018; Chen et 

al., 2020) [51, 24]. These predictive tools empower fisheries 

managers to make adaptive decisions such as adjusting catch 

quotas or implementing spatial and temporal fishing 

closures based on current ecosystem conditions. This 

approach enhances sustainability, improves stock resilience 

and helps fisheries respond proactively to the impacts of 

climate variability (Kaplan et al., 2021; Tang et al., 2022) 

[62, 132]. 

 

4.3 Automated Compliance and Enforcement Tools 

The integration of Remote Sensing (RS) technologies with 

Artificial Intelligence (AI) significantly strengthens 

maritime surveillance by detecting and analyzing fishing 

vessel activities through data from Synthetic Aperture Radar 

(SAR) and the Automatic Identification System (AIS). AI 

algorithms process this data to classify vessel behavior and 

identify potential illegal, unreported and unregulated (IUU) 

fishing activities with high accuracy (Kroodsma et al., 2018; 

Park et al., 2020) [68, 105]. These models can detect suspicious 

patterns such as mid-sea transfers of goods or catch, 

irregular vessel movement or unauthorized access to 

protected areas. Automated alerts generated by AI systems 

can prompt enforcement actions or notify fishers about 

compliance requirements and restricted zones, thereby 

improving governance, reducing illegal exploitation and 

enhancing transparency in marine resource use (Taconet et 

al., 2019; McCauley et al., 2016) [130, 83]. 
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 4.4 Example Work-flow 

4.4.1 Remote Sensing Data Acquisition: Satellites collect 

oceanographic data such as SST and chlorophyll-a 

concentration. 

 

4.4.2 AI Model Processing: Machine learning models 

analyze these environmental variables to identify potential 

fish hot-spots. 

4.4.3 Prediction Output: The AI system predicts areas with 

high fish abundance. 

 

4.4.4 Actionable Alerts: Notifications are sent to fishers to 

optimize fishing effort or to authorities to enforce spatial 

closures and protect vulnerable habitats. 

 

 
 

Fig 1: From Satellite to Sea: A Predictive Model for Fish Abundance and Habitat Protection 

 

5. Challenges and Limitations 

Key challenges and limitations in applying Artificial 

Intelligence (AI) and Remote Sensing (RS) to fisheries 

resource management include: 

 

5.1 Data Quality and Availability: Reliable AI models 

require large volumes of high-quality, well-annotated data, 

which is often lacking particularly in developing regions or 

the Global South due to limited technological infrastructure 

and resource constraints (Achieng et al., 2021; Garcia et al., 

2020) [1, 38]. Fisheries data collection in these areas is 

frequently costly, fragmented, and inconsistent, which 

hampers the effectiveness and scalability of AI applications 

in fisheries management (Cisneros-Montemayor et al., 

2019) [25]. Incomplete, imbalanced, or noisy data-sets reduce 

model accuracy, limit generalizability, and may introduce 

biases into decision-making processes (Vellido, Martín-

Guerrero, & Lisboa, 2012) [136]. 

 

5.2 Model Transparency and Explainability: Many AI 

techniques, particularly deep learning, function as "black 

boxes," meaning their internal decision-making processes 

are often opaque to end-users. This lack of transparency 

presents a significant challenge for fisheries managers and 

stakeholders, who may find it difficult to interpret how 

predictions or management recommendations are generated 

(Lipton, 2018; Rudin, 2019) [76, 116]. The resulting ambiguity 

can undermine trust in AI systems and hinder their broader 

adoption in fisheries governance (Doshi-Velez & Kim, 

2017) [32]. To address this, there is a growing need to 

develop interpretable AI models and establish clear 

frameworks for communicating model uncertainty and 

decision rationale (Gilpin et al., 2018) [39]. 

 

5.3 Technological Capacity and Training Needs: 

Implementing Artificial Intelligence (AI) and Remote 

Sensing (RS) technologies in fisheries requires not only 

robust infrastructure and computational tools but also skilled 

personnel with technical literacy. However, many fisheries 

stakeholders particularly those operating in small-scale or 

resource-limited contexts often lack the necessary training, 

experience, and institutional support to effectively adopt and 

utilize these advanced technologies (Tilley et al., 2020; 

Ogunlana et al., 2022) [102, 134]. This capacity gap hinders the 

effective deployment, integration and sustained use of AI 

and RS in fisheries management and monitoring (Jentoft & 

Eide, 2011) [58]. Addressing these challenges requires 

targeted capacity-building programs, inclusive technology 

design, and long-term investment in digital infrastructure 

(Purcell & Pomeroy, 2015) [108]. 

 

5.4 Legal and Ethical Concerns: The use of AI-driven 

surveillance tools in fisheries raises significant privacy and 

ethical concerns, especially when monitoring small-scale 

fishers and indigenous communities. Such technologies risk 

enabling disproportionate enforcement or the 

marginalization of vulnerable groups if implemented 

without inclusive and participatory governance frameworks 

(Molnar et al., 2021; Cohen et al., 2019) [91, 26]. These 

challenges are compounded by regulatory uncertainty and 

fragmented policy environments, which complicate the 

adoption and governance of AI technologies in fisheries 

management (Gouritin, 2020; Tallis et al., 2021) [43, 131]. 

Ensuring ethical deployment requires balancing 

technological advancement with social equity, transparency, 

and accountability. 
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 5.5 Cost and Infrastructure Limitations: High costs 

associated with sensors, data transmission, computational 

infrastructure and ongoing maintenance present significant 

barriers to the adoption of Artificial Intelligence (AI) and 

Remote Sensing (RS) technologies in fisheries. These 

challenges are especially pronounced in remote or 

underdeveloped regions where reliable electricity and 

internet connectivity are limited or absent (Ogunlana et al., 

2022; Tilley et al., 2020) [102, 134]. The initial investment and 

operational requirements for AI and RS systems often 

exceed the financial and technical capacities of small-scale 

fisheries and local management institutions, thereby 

reinforcing existing inequalities in access to digital tools 

(Addison et al., 2022; Davies et al., 2020) [2, 30]. Reducing 

these barriers requires targeted investment, technology 

transfer, and context-sensitive infrastructure development. 

 

5.6 Interoperability and Usability Issues: Integrating 

Artificial Intelligence (AI) into existing fisheries 

management systems and work flows presents several 

challenges, particularly in ensuring alignment with 

established practices and institutional capacities. For AI 

technologies to be effectively adopted, they must feature 

user-friendly interfaces and demonstrate compatibility with 

traditional data collection and decision-making methods 

(Beveridge et al., 2019; Kourti et al., 2020) [15, 67]. Without 

intuitive tools and work flow integration, stakeholders may 

struggle to engage with AI systems or may resist their use 

due to perceived complexity or disruption (FAO, 2022) [35]. 

Facilitating stakeholder acceptance requires co-designed 

systems that consider local contexts and promote practical 

usability in everyday fisheries management (Addison et al., 

2022) [2]. 

 

6. Future Prospects and Innovations 

Future prospects and innovations in fisheries resource 

management are increasingly focused on integrating cutting-

edge technologies like environmental DNA (eDNA), 

Artificial Intelligence (AI), autonomous drones, blockchain 

and citizen science to enhance monitoring, traceability and 

participatory governance. 

 

6.1 eDNA + AI for Non-invasive Species Monitoring 

Environmental DNA (eDNA) metabarcoding allows 

detection of species presence by analyzing genetic material 

shed into water, providing a non-invasive, cost-effective and 

highly sensitive tool for biodiversity assessment and 

fisheries monitoring (Taberlet et al., 2018; Deiner et al., 

2017) [129, 31]. Artificial Intelligence (AI) supports this 

apporach by automating the processing and classification of 

complex eDNA sequence data, thereby improving species 

identification accuracy and enabling large-scale, real-time 

ecosystem assessments (Ardura et al., 2019; Bohmann et al., 

2021) [6, 19]. This methodology is particularly valuable for 

detecting rare or endangered species as well as monitoring 

invasive species without disturbing habitats (Rees et al., 

2014; Harper et al., 2019) [113, 49]. 

 

6.2 AI-powered Autonomous Drones for In Situ 

Observations 

Autonomous drones equipped with AI-enabled sensors and 

computer vision systems are increasingly utilized to conduct 

detailed in situ observations of fish populations, aquaculture 

pens and Marine Protected Areas (MPAs). These drones 

deliver high-resolution spatial and temporal data on fish 

behavior, health and habitat conditions, facilitating 

continuous, non-invasive monitoring that minimizes human 

labor while enhancing data accuracy and reliability (Bertoldi 

et al., 2021; Lee et al., 2020) [14, 72]. AI algorithms 

embedded on-board enable real-time processing of imagery 

and sensor data, which supports rapid decision-making and 

adaptive management in dynamic marine environments (Liu 

et al., 2022; Sharma et al., 2023) [77, 124]. 

 

6.3 Blockchain + AI for Traceability and Fisheries 

Supply Chain Integrity 

Blockchain technology combined with Artificial 

Intelligence (AI) offers a transparent and tamper-proof 

system for tracking fish products from catch to consumer, 

thereby enhancing supply chain integrity and combating 

fraud and illegal fishing activities (Kamilaris, Fonts, & 

Prenafeta-Boldú, 2019; Leng et al., 2020) [61, 73]. AI 

techniques analyze blockchain-generated data to detect 

anomalies, optimize logistics and ensure adherence to 

sustainability certifications, fostering greater accountability 

throughout the supply chain (Tian, 2016; Queiroz et al., 

2020) [133, 110]. This integration not only builds consumer 

trust but also supports responsible sourcing practices and 

strengthens regulatory enforcement in the fisheries sector 

(Wolfert, Ge, Verdouw, & Bogaardt, 2017) [140]. 

 

6.4 Citizen Science Data Integrated with AI for 

Participatory Management 

Incorporating citizen science data such as fish sightings, 

catch reports and environmental observations into AI 

models democratizes fisheries monitoring and management. 

AI processes heterogeneous, large-scale citizen-generated 

data to identify trends, validate scientific findings and fill 

data gaps, especially in under-monitored regions (Kosmala, 

Wiggins, Swanson, & Simmons, 2016; McKinley et al., 

2017) [66, 86]. This participatory approach fosters community 

engagement, enhances data richness, and supports co-

management strategies that align with local knowledge and 

priorities (Danielsen et al., 2014; West et al., 2020) [29, 139]. 

 

7. Conclusion 

The integration of Artificial Intelligence (AI) and Remote 

Sensing (RS) is revolutionizing fisheries resource 

management, offering powerful solutions to the 

longstanding challenges of monitoring, assessment, and 

sustainable exploitation of marine resources. By harnessing 

satellite data, drones, advanced sensors and AI-driven 

analytics, fisheries managers can now monitor vast and 

previously inaccessible ocean areas in real time, predict fish 

abundance zones, detect illegal activities and automate 

species identification with unprecedented accuracy and 

efficiency. 

AI techniques including machine learning, deep learning, 

computer vision and natural language processing enable the 

rapid analysis of complex and heterogeneous data-sets, 

supporting dynamic stock assessments, vessel surveillance 

and ecosystem health monitoring. Remote sensing provides 

the essential environmental context, delivering continuous 

data on key parameters like sea surface temperature, 

chlorophyll-a and ocean productivity. The synergy between 

these technologies allows for adaptive, data-driven decision-

making that is critical in the face of overfishing, IUU fishing 

and climate change. 
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 Despite these advancements, challenges remain. Data 

quality and availability, especially in the Global South, 

model transparency, technological capacity and ethical 

considerations around surveillance must be addressed to 

ensure equitable and effective implementation. Ongoing 

innovation such as eDNA monitoring, AI-powered 

autonomous drones, blockchain for supply chain integrity 

and participatory citizen science promises to further enhance 

the scope and impact of AI and RS in fisheries. 

In summary, the combined use of AI and remote sensing 

represents a transformative leap toward holistic, sustainable 

and resilient fisheries management. By enabling real-time 

ecosystem monitoring, predictive analytics and automated 

enforcement, these technologies support the long-term 

health of marine ecosystems and the communities that 

depend on them. 
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