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Abstract 
For modern farmers, predicting crop yields is essential to making data-driven choices that increase 
productivity and promote sustainable farming practices. In order to predict crop yields based on a 
number of crucial soil and environmental characteristics, this study will use the machine learning 
approach. Soil nutrient levels, weather, temperature, and precipitation are all factors that go into 
training the model. This study employs a stable prediction model that is built using the following 
machine learning algorithms: Random Forest, Decision Tree, Naive Bayes, KNN, and Support Vector 
Machine (SVM). It is suggested to preprocess the data using feature selection techniques like 
BORUTA and Recursive Feature Elimination (RFE) to remove multiple or unnecessary features. This 
improves the accuracy and efficiency of the model. The database was prepared and the model accuracy 
was improved using random oversampling (ROSE) and SMOTE methods. The system is also used to 
provide a fertilizer recommendation whereas the system uses information on the soil and crop types and 
suggests effective fertilizers to use hereby helping farmers choose the best fertilizers in terms of 
nutrient management. 
 
Keywords: Crop yield prediction, random forest, support vector mechanism, decision tree, RFE model, 
BORUTA model, SMOTE model, rose model, precision agriculture, sustainable agriculture 
 
Introduction 
Machine learning (ML) is playing a more and bigger role in the agricultural sector, with 
several useful applications such as crop forecasting, feature prediction, and fertilizer 
prescription. carried out one of the first investigations in this direction, erecting a 
classification scheme of significant soil and environmental attributes, namely pH, 
temperature, humidity, rainfall, phosphorus, potassium, and nitrogen. The paper highlighted 
the fact that feature selection is vital in improving model performance. The techniques most 
suited to filter the most important characteristics were Recursive Feature Elimination (RFE), 
Boruta, and MRFE. Comparison of classifiers revealed that Random Forest was more 
accurate and stable than defined traditional methods, basing on the necessity of more 
optimised models. Their strategy attained 99.3 percent precision in the 22 crop sets by types 
through the use of GA in adapting the model hyper-parameters. In enhancing clarity and 
confidence, explanable AI techniques such as LIME and SHAP were also employed to 
examine model judgments. Such ensemble learning with optimization demonstrated the 
effectiveness of adaptive algorithms in dealing with complex agricultural data [2]. proposed a 
use of two-model system of crop categorization and yield forecasting to meet the demands of 
both regression and classification. Several classifiers, including Random Forest, SVM, and 
Extra Trees, were evaluated with the dataset of 2,200 items consisting of soil and climatic 
variables; Random Forest achieved the best results. The authors used regressions on World 
Bank and FAO past data together with imputation of data using MICE to predict yield. They 
also applied Explainable AI (XAI) technologies including feature importance analysis and 
LIME to interpret their results. This is because the study again reinstated the essence of 
explainability, feature engineering, and data preparation in developing dependable machine 
learning models in agriculture [3] with the sole focus of the study being on rice yield 
prediction.  
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The model was constructed on an LSTM structure that was 
modified to feature a yield target and a custom lossed. 
With the use of data derived vegetation indices (NDVI, 
SAVI and MSR) from drone imagery, the model achieved a 
95 percent classification accuracy and Kappa agreement 
value of 0.82. In this paper, the benefits of including 
temporal information as well as domain-specific objectives 
in deep learning frameworks to support yield forecasting 
were shown. Additionally, [4] Investigated yield prediction 
with temporal and multimodal data sources. And to identify 
intricate spatial and phenological patterns in agricultural 
data, they suggested a model that integrated Temporal 
Graph Neural Networks (TGNNs) with Meta-Transformers. 
Their approach achieved 97% classification accuracy by 
combining temporal data with RGB, infrared, and 
multispectral pictures. This method offered a scalable 
solution from small farms to national planning models by 
combining climatic and non-climatic parameters to deliver 
suggestions relevant to a certain area. Using a unique deep 
learning model named Target-Aware Yield Prediction 
(TAYP) [5] Concurrently, it has been demonstrated that 
incorporating multi-sensor data from remote monitoring 
platforms and IoT-enabled equipment greatly improves real-
time agricultural analysis. In [6] Random Forest 
demonstrated its efficacy in multisource data situations by 
delivering the lowest error rates among the studied models. 
In addition to classification, this approach enables context-
aware cultivation recommendations, facilitating better 
decision-making and increasing productivity in a range of 
circumstances. Hybrid deep learning architectures that 
combine temporal and spatial data representations have also 
recently led to advancements in yield prediction. Utilizing 
satellite and aerial data, a model that combines 3D 
Convolutional Neural Networks, ConvLSTM, and Vision 
Transformers (ViT) can extract vegetation indices, 
environmental stress signals, and subtle growth patterns. 
With significant gains in accuracy and resource planning, 
this combination allows for strong generalization across 
crops and geographical areas. The integration of self-
attention mechanisms can be used in making fast crop-
management decisions and to get real-time information to 
decide when to irrigate and fertilize. The combination of 
machine learning and multi-sensor data fusion in an 
environmental analysis such as growth stage or soil 
condition, or season makes High-precision crop 
classification possible, which is stated in [7]. The 
environmental factors such as the records of pesticides used 
and weather information are also crucial when predicting 
crop production. Embedding these features in logistic 
regression and gradient boosting models has resulted in 
predictability accuracy of almost perfection. These models 
offer cross-validated, scalable decision supports in yield 
forecasting against the use of pesticides and climatic 
variables of volatility, and the parameters against hyper-
parameters of the algorithm is adjusted [8]. Further, a 
different paper applied regression and deep learning models 
to predict crop production dynamics in agricultural regions 
in India and the inputs in that study were rainfall, farmed 
land, temperature, and crop type. Other methods are usually 
outperformed by Random Forests and Convolutional Neural 
Networks in terms of the level of accuracy and their being 
intelligible. In [9], the findings highlight how advanced 
models may assist early crop planning, reduce losses, and 

contribute to national food security by guiding decisions at 
both the field and policy levels. Unsupervised domain 
adaptation using a Bayesian domain adversarial neural 
network (BDANN) to manage domain shift in agricultural 
yield modeling is discussed in reference [10]. The model uses 
a combination of Bayesian inference and a Domain 
Adversarial Neural Network (DANN) to evaluate prediction 
uncertainty and extract domain-invariant properties. A very 
successful deep learning model for canola crop production 
prediction is proposed in [11] using hyperspectral data 
collected by UAVs. To improve the basic 1D-CNN model 
(R² = 0.82) for deployment on resource-constrained edge 
devices like Raspberry Pi, we use SHAP-based feature 
selection, pruning, and quantization. This leads to a much 
lower model size (~93%). The study also investigates 
positive arithmetic as a substitute for floating-point formats, 
obtaining a 94% model size reduction and an R² of 0.772 
[12]. This study shows how clever model compression 
techniques allow precision agriculture to monitor crops in 
real-time, at a cheap cost, and with high accuracy, and 
shows the model performance. 
 
Related Work 
A. Based On Soil Conditions 
Several methods have been proposed by researchers 
worldwide. Machine learning and deep learning are used by 
Ingrain technology and equipment to enhance farming by 
predicting crop growth and maximizing revenue. Our effort 
involved reviewing research publications on crop prediction, 
recommendation, and fertilizer use. Soil conditions are 
critical factors of crop output, influencing water availability, 
nutrient uptake, and plant growth. Recent research has 
shown that by integrating soil-related data, various ML and 
DL algorithms may enhance yield prediction [12]. Used 
Random Forest and LightGBM models to analyze real and 
synthetic cotton yield data, with soil type, nitrogen level, 
cultivar, and accumulated heat units as important input 
features. The study found that soil type had a substantial 
impact on fertilizer efficacy, with optimal nitrogen levels 
(~200 kg/ha) yielding the maximum yields across soil 
textures [13]. Used Gaussian Process (GP) models with 
satellite-derived soil moisture (SM), Forecasting maize, 
wheat, and soybean yields in the continental United States 
using vegetation indicators and meteorological data. Their 
sensitivity analysis demonstrated that soil moisture and 
greenness (EVI) were the most important factors, and the 
GP framework also enabled anomaly detection in areas with 
severe soil-related stress, such as drought. Jayanthi and 
Anitha (2021) went beyond static modeling and created a 
Deep Reinforcement Learning (DRL) model that considered 
soil fertility indicators, including nitrogen, phosphorus, 
potassium, pH, and organic matter as dynamic 
environmental states. The DRL agent learnt to optimize 
yield by interacting with the environment and responding to 
temporal changes in soil and climate variables [14]. Together, 
these studies show that soil-based characteristics, 
specifically, moisture and nutrient content content are 
critical for precise and flexible crop production forecasting. 
 
B. Based On Climatic Conditions 
A yield projection model isn't complete without including 
the influence of weather on crop development [15]. used a 
combination of climate and NDVI data to estimate wheat 
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 yield in Pakistan's Multan district. The model improved 
prediction accuracy by incorporating climate parameters like 
wind speed, precipitation, and temperature, as well as 
satellite-derived vegetation indices. Random Forest, SVM, 
and LASSO resulted in an R² score of up to 0.88, with 
Random Forest outperforming the others [16]. Researched the 
use of big data analytics for weather-based crop prediction 
in India, taking into account a wide range of meteorological 
variables like temperature, humidity, rainfall, and solar 
radiation across different districts. The model was evaluated 
on major crops such as rice, wheat, and sugarcane, and the 
addition of real-time meteorological inputs resulted in 
considerable increases in forecast accuracy [17]. Using an 
interpretable machine learning approach, climate variables, 
soil characteristics, and satellite-derived indices were 
combined to forecast cotton yield. The most important 
climatic element that affected yield throughout the boll-
setting stage was precipitation, particularly between June 
and August. The majority of predictive power was attributed 
to climate-related variables, underscoring the close 
relationship between seasonal weather fluctuations and 
cotton productivity. By analyzing several environmental 
elements such soil type, pH, temperature, rainfall, humidity, 
sunshine hours, and fertilizer usage, machine learning 
enables accurate and early crop output prediction [18]. Yield 
estimate makes use of a wide variety of techniques, such as 
RNNs, Boosted Regression Trees, Support Vector 
Regression (SVR), and Random Forest (RF). By combining 
the SAR interferometric coherence of Sentinel-1 and the 
optical vegetation indices of Sentinel-2, machine learning 
was used in [19] to predict rice yield using Gaussian kernel 
regression (GKR). In [20], Multiple Instance Regression 
(MIR) and Online Dictionary Learning (ODL) were applied 
to improve county-level maize yield predictions using 
machine learning. The model achieved high prediction 
accuracy and regional generalization by addressing issues 
such as geographical heterogeneity and mixed pixels in 
satellite imagery by transforming pixel-level remote sensing 
inputs into sparse codes [21]. Through the analysis of data 
including soil characteristics, climatic variables, and satellite 
or drone imagery, machine learning is frequently used to 
predict crop production. Using vegetation indices produced 
from remote sensing data, one may track the health of crops 
and their growth patterns. To make very accurate yield 
predictions, these features are then incorporated into models 
such as deep learning networks, random forests, or linear 
regression.  
 
C. Machine Learning Use For Crop Yield Prediction 
Utilizing machine learning methods allows for the 
prediction of agricultural yields [22]. is aSubfield agricultural 
yields were predicted using machine learning, more 
especially LSTM networks, and supplemental data such as 
soil, weather, and topography, as well as satellite images. 
Sentinel-2 time-series data was analyzed to identify trends 
in crop growth, and pixel-by-pixel predictions were 
generated. Shapley values and other feature attribution 
techniques were used to determine the most significant 
spectral bands and growth stages to improve interpretability. 
[23]. Using sensor data such as temperature, humidity, and 
CO₂, machine learning in this study allows for precise, real-
time soybean quality prediction. It enhances grain 
transportation and storage decision-making and lowers 
postharvest losses [24]. This paper discusses numerous 

Random Forest is one of several machine learning 
algorithms for predicting agricultural production, ANN, 
CNN-RNN, and XGBoost, stressing their importance in 
palm oil yield estimation using data such as weather, soil, 
and remote sensing indices [25]. The study uses agro 
meteorological and satellite data to estimate tea yield using 
models such as Decision Trees, SVR, XGBoost, and a deep 
neural network optimized using Neural Architecture Search, 
with great accuracy (R² = 0.99) [26]. This paper uses satellite-
derived phenological profiles and integrates them with 
FAO's Aqua Crop model and agro-ecological zoning to 
estimate maize and wheat yields, exhibiting a hybrid remote 
sensing and modeling technique [27]. This study uses 
ensemble machine learning (Cubist, Random Forest, 
XGBoost) and multisource data (NDVI, weather, soil) to 
downscale U.S. soybean and corn yield data to 1-km grids 
and achieves excellent spatiotemporal accuracy for large-
scale yield prediction [28]. The study improves yield 
prediction in intercropping systems utilizing an optimized 
Feedback Neural Network (FNN) paired with advanced loss 
functions like HAEL, DML, and QL, capturing agronomic 
complexity and increasing forecast accuracy beyond typical 
MSE-based models [29]. By modeling both deep features and 
spatial consistency, a 3D CNN may better forecast wheat 
yield in China by extracting spatial-spectral characteristics 
from the various. 
Multispectral pictures and fusing them using a multikernel 
Gaussian process [30]. In this pilot work, cranberry yield is 
noninvasively estimated using microwave sensing and 
machine learning (PCA + LDA). By comparing backscatter 
signals with ground-truth data, high prediction accuracy 
(avg. error < 1.3%) is achieved [31]. By guaranteeing ideal 
light availability for crops like Andrographis paniculata, the 
study optimizes PV tilt angles in agrivoltaic systems using 
simulation-based modeling and predictive analytics, hence 
indirectly increasing crop productivity [32]. By identifying 
spatiotemporal patterns in vegetation growth data, Spiking 
Neural Networks (SNNs) are used to estimate winter wheat 
yield in China using NDVI time series from MODIS. They 
achieve 95.6% accuracy [33]. This paper proposes a soil 
fertility mapping system that provides fertilizer 
recommendations based on crop type, soil type, and real-
time soil NPK levels using the Internet of Things in 
combination with machine learning models like Gaussian 
Naive Bayes, SVM, KNN, and Logistic Regression. With 
94% testing accuracy and 96% training accuracy, Gaussian 
Naïve Bayes was the most effective model in the test for 
forecasting fertilizer. These smart systems make sure that 
fertilizer is used in the best way possible, which lowers the 
impact on the environment while increasing agricultural 
yield and resource efficiency. 
 
Methodology 
A. Dataset Description 
The dataset encompasses a diverse range of 22 unique crop 
types, such as rice, wheat, maize, banana, apple, grapes, 
mung beans, chickpeas, cotton, and soybeans, among others. 
This study makes use of the Crop Yield Fertilizer dataset, 
which is available at Hugging Face Datasets Hub [34]. This 
dataset includes basic agricultural characteristics such as 
soil pH, temperature, moisture, and nitrogen, phosphorus, 
and potassium quantities. Additionally, it includes yield 
values (in tons per hectare) and the type of fertilizer applied,  
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 B. Pre-Processing 
The first stage in preparing the Crop Yield Fertilizer dataset 
for analysis was extensive data cleaning and examination. 
The Hugging Face datasets library was used to load the 
dataset, which was then turned into a pandas Data Frame for 
easy processing. It was revealed by an exploratory check 
that was conducted to identify missing values, 
inconsistencies and repetitive information. Numerical values 
left unencrypted were calculated using the median to keep 
data intact and prevent probability that may result in bias 
and with the duplicated assignments removed to ensure the 
data points' quality and uniqueness. Then categorical 
variables such as form of fertilizer and the type of crops 
were converted into numeric forms so that they could be 
used in machine learning tools. The label encoding was 
applied to fertilizers types and crop labels in the case of 

each unique designation into an integer. This encoding 
phase is required to allow the models to properly read 
category variables while avoiding bias caused by arbitrary 
numerical assignments. This dataset was divided into 
training and testing subsets in a ratio of 80:20 to eliminate 
sampling bias and maintain class distribution. The planned 
work's work flow is depicted in Figure 1.  
Among the feature selection approaches that are mostly used 
are the filter, wrapper and embedding. The wrapper 
strategies used in this work are very effective in identifying 
the most salient and pertinent aspects that contribute to 
predictive accuracy because they assess subsets of the 
features according to model performance. Besides feature 
selection, sampling techniques are a must to enhance model 
performance, with unbalanced or sparse data. In order not to 
induce bias to the majority classes in the model. 

 

 
 

Fig 1: Workflow of the proposed work 
 

The proposed framework combines both feature selection 
(RFE, BORUTA) and sample collection (SMOTE, ROSE) 
to build an efficient crop recommendation system based on 
input parameters such as N, P, K value, pH, rainfall, 
moisture, and temperature. The suggested crop is thereafter 
deployed in two parallel frameworks; the production of crop 
yields and fertilizer recommendation. This integrated model 
provides a proper prediction of crops and yields besides 
recommending the best fertilizer that would eventually 
increase productivity. In general, the model increases 
sustainability of agriculture and enhances its level of 
decision-making and avoids wastage of resources by using 
smart data-based insights. The system architecture of the 
proposed crop, yield and fertilizer recommendation scheme 
is motivated by, and slight adaptations of AgroAdvisor base 
framework proposed in [35]. 
 
C. Feature Selection Techniques  
The feature selection is the procedure of separating and 
retaining most pertinent qualities of a dataset to enhance the 
proficiency and effectiveness of a model. It reduces 
dimensionality and eliminates noise as well as the 
possibility of overfitting. The feature selection improves 
computer performance and makes it possible for the model 
to capture more meaningful patterns leading to improved 
generalization on the new data. 
 
1. Recursive Feature Elimination (RFE): A wrapper 
technique for feature selection called "redundant feature 

elimination" (RFE) estimates the most important aspects of 
a reinforcement machine learning model. It is achieved by 
training model repeatedly and removing minimal important 
features until an optimal set is recovered. In contrast to filter 
methods, which do not take account of the context of the 
learning algorithm, RFE measures feature importances 
(iterative weights as applied to each feature), thereby 
performing better analysis of feature interactions. The 
approach simplifies the model form, increases accuracy and 
safeguards against overfitting by eliminating unnecessary or 
irrelevant input. Working is done in stages at RFE. First, all 
the The model is trained with features. The model 
assessment is then used to rank the features' relevance. (For 
instance, the linear models' coefficients or the tree-based 
models' feature significance). The smallest feature (s) are 
removed and the remainder retrained. Until the required 
amount of characteristics remain, this process is repeated. In 
order to streamline it further, RFE can be combined with 
cross-validation, which is also referred to as RFECV that 
will automatically determine how many features should be 
retained and which model set should be used by comparing 
the performance of the models on individual subsets. That is 
why RFE is a successful and flexible method of feature 
selection. The ability of RFE to enhance model 
interpretability and effectiveness is among the most 
significant benefits of the technique, especially when 
direction through high-dimensional data around. It 
guarantees that relevant ones only will be retained, which 
lowers the training time and computing cost and generalizes 
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 the model. RFE is particularly applicable to small datasets 
and has performed well with algorithms which are prone to 
correlated features like Random Forest where low levels of 
accuracy can be achieved. RFE plays a role towards coming 
up with more accurate and reliable models by eliminating all 
such redundant components. RFE has been effectively 
implemented in agricultural solutions like prediction of soil 
moisture, land suitability analysis and crop productions.  
 
2. Boruta 
Boruta is an extensive feature selection algorithm, which 
relies on the Random Forest algorithm. In contrast to 
methods focusing on finding the optimal minimal 
combination of characteristic, Boruta aims at finding not 
just any subset of features, which is significant in predicting 
outcome. It is particularly helpful in the cases when it is 
vital to not miss any seminal variables, even the interrelated 
ones. Boruta is based on a wrapper method and is distinctive 
in that it identifies important variables in messy, high-
dimensional data.  
The following procedures make up the Boruta algorithm: 
1. Extend the dataset by adding shadow attributes 

(shuffled copies of the original features), usually five at 
a time. 

2. Shuffle the shadow characteristics to eliminate any 
association with the target variable. 

3. Train a Random Forest model and calculate Z-scores 
(importance scores) for each feature. 

4. Determine the maximum Z score among the shadow 
attributes (MZSA). 

5. Give a "hit" to any original feature that has a higher Z 
score than the MZSA. 

6. For features of unknown importance, run a two-sided 
statistical test. 

7. Marks ranks substantially lower than MZSA as 
unimportant, and they are eliminated. 

8. Mark is rated substantially higher than MZSA as 
important. 

9. Remove any shadow characteristics from the dataset. 
10. Repeat this method until all trails have been evaluated 

as important or unimportant. 
 
Boruta is particularly successful in agricultural applications 
for understanding that agricultural yield, disease prevalence, 
and site appropriateness are influenced by a variety of 
environmental, climatic, and soil-based variables. For 
instance, Boruta may be used to determine important 
variables like temperature, rainfall, NDVI, soil pH, moisture 
content, and nutrient levels when predicting crop 
production. Boruta in models offering improved 
generalization and more information on the different factors 
affecting agricultural results because of considering all 
important factors.  
 
D. Sampling Techniques 
In dealing with imbalanced dataset, sampling techniques 
play a remarkable role, To prevent the machine learning 
model from being biased towards the majority class, they 
increase the level of prediction, recall, and equitability, 
especially to the underrepresented population. They enable 
classification of crops, production forecasting and fertilizer 
recommendations in sectors like agriculture among others. 
They help in constructing more inclusive and data-driven 
solutions. 

1. SMOTE (Synthetic Minority Over sampling 
Technique) 
SMOTE SMOTE can be considered as an efficient 
oversampling technique to deal with class imbalance in data 
that is widespread in practice, as in agriculture, whereby 
some crops or nutrient deficiencies are under-represented. 
Because of biased data, machine learning algorithms could 
prefer the majority class and thus the minority class would 
end up with poor prediction accuracy. SMOTE improves the 
model's capacity for generalization in ways other than just 
adding up the less samples, as far as the minority classes are 
concerned; it does so by creating additional samples the 
same way. The singular concept of SMOTE is to produce 
artificial sample which is to follow the minority classes 
already present in data. It obtains the k-nearest neighbors of 
each minority sample and a random sample is selected. Then 
it linearly interpolates between the chosen point and their 
neighbor in order to produce a new sample. 
Such a strategy makes the feature space smoother and 
creates more correct data points that consider the 
distribution of the minority class. These are the artificial 
cases added in the training set so as to equalize the class 
information. SMOTE is highly effective on a continuous 
numerical variable and is typically used in problems of 
classifications related to diseases detection, fraud alerting, 
and type recognition of crops.  
 
2. ROSE (Random Over Sampling Examples) 
Another sampling strategy is ROSE that uses new synthetic 
paradigms to counterweight skewed databases. It is 
particularly efficacious in working with both numerical and 
categorical data and it can be more flexible in comparison 
with the general oversampling strategies. ROSE does a good 
job at actually solving applications such as text 
classification, healthcare, and agriculture, where actual data 
is often corrupted and imbalanced. Its aim is to create 
balanced and realistic data to train the model. The ROSE 
approach makes use of a smoothed bootstrap. Rather than 
directly copy samples or apply linear interpolation, such as 
in SMOTE, ROSE generative instances by adding 
predictable randomness (or noise) to existing data points. It 
provides new data samples based on a kernel centered about 
each observation and is more varied. The approach allows 
ROSE to simulate a widened set of potential real-world 
conditions, which is particular significant in those 
circumstances where the data is not highly differentiated. 
At least one of the key advantages of ROSE is that it is 
possible to reduce overfitting by injecting unpredictability, 
i.e. realizing more robust models. It is particularly helpful 
where the data contains numerical as well as categorical 
attributes.  
 
 
E. Machine Learning Algorithms 
1. Naïve Bayes(NB) 
Naive Bayes is a probabilistic generalization based on the 
Naivete Theorem a Bayesian classifier that can be used to 
conclude the probability of a category to appear given the 
presence of a set of predetermined features. It is referred to 
as naïve because, given the class level, it assumes that every 
feature is independent of every other feature. This high 
assumption often works very well in practical real-world 
classification scenarios to the point of achieving astonishing 
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 results. Bayes Theorem is mathematically stated as in (Eq 
1). 
 

 
 
Naive Bayes is used by first transforming the data in the 
form of a frequency table and then it is used to calculate the 
probabilities of each type of class based on observed values 
of features. The output prediction is equal to the class of the 
largest posterior probability. Naive Bayes algorithms exist 
in various forms; Gaussian works on continuous data, 
Multinomial on count data and Bernoulli on binary features. 
Labelling of crop types can be accomplished in agriculture 
based on environmental conditions concerning type of soil, 
rainfall and temperatures using Naive Bayes. It is also able 
to help presage the presence of diseases using symptoms or 
past conditions. Its strongest suits are ease of use, fast, and it 
works well with small data sets.  
 
2. Decision Tree  
The decision tree is a type of tree model that may be used 
for regression and classification. It partitions the data nodes 
based on the condition imposed on the features value, in 
some attempt to make their decisions as clean as possible, 
i.e., to contain as many or as many of the data points most or 
all in the same category. The internal nodes test an attribute, 
each branch Garcia et al. represents a decision result, with 
each leaf node standing for a prediction or class label. The 
Gini Index and Information Gain are two quantitative 
metrics that help choose which characteristic should be used 
to effect the splitting. Tree building usually starts with a root 
node and recursively partitions (or splits) the data, until the 
termination conditions are satisfied (e.g. maximum depth or 
pure nodes). Due to its simplicity and interpretability, 
decision trees may be used in the actual world of decision-
making. They tend, however, to suffer overfitting, 
particularly as the tree becomes over-complex, and may be 
easily destabilized by small data changes. In agriculture, 
Decision trees could be used to determine the most suitable 
crop to plant relying on the soil conditions and weather 
conditions or to determine soil type in the field so that 
different crops can be irrigated with different irrigation 
systems. They may also apply in the prediction or the pest 
control plan of a disease. 
 
3. Support Vector Machine (SVM) 
Support vector machines (SVMs) are often used as 
supervised learning techniques, although they can also 
handle regression and classification problems. SVMs 
determine the optimal plane by classifying data points into 
groups based on a maximum margin. This margin is the 
distance between the support vectors - the closest data 
points from each class - and the plane. SVMs use a 
technique called the kernel trick to transform the input data 
into a higher-dimensional space, which can be distinguished 
when a linear partition of the data is not possible. Regular 
kernels include linear, polynomial, and diagonal basis 

functions (RBFs).The goal is to identify the best hyperplane 
in this transformed space that divides the classes. 
 
4. K-Nearest Neighbors (KNN) 
Regression and classification are two applications of the 
non-parametric K-Nearest Neighbors (KNN) algorithm. It 
functions on the presumption that comparable data points 
are located in feature space near one another. If you ask 
KNN to predict anything, it will use the labels of the "k" 
training samples that are geographically nearest to the query 
location to achieve its forecast. To put a number on how 
close something is, people often utilize distance metrics 
such as the Manhattan, Minkowski, or even the Euclidean 
distance. A lazy learner is the name given to KNN due to 
the fact that it does not pre-train a model. In fact, it stores all 
of the training data and makes a decision only when 
requested to make a forecast. The result is decided by 
averaging the labels of the closest neighbors (regression) or 
by holding a majority vote (classification). Agricultural 
applications of KNN include crop production prediction 
using weather, soil moisture, and temperature as inputs. 
 
5. Random Forest (RF)  
Random Forest is an efficient ensemble learning method 
that generates multiple decision trees and pools their data to 
provide more accurate and reliable predictions. It operates 
on a technique referred to as bootstrap aggregating, where 
the sample is taken to build using replacement. 
some subgroups of the original data. A distinct decision tree 
is trained with each subset. In addition, at Only a random 
subsample of characteristics is taken into account for each 
node during splitting in a tree, further contributing to the 
heterogeneity of the trees. This randomness reduces the 
risks of overfitting and ensures that the trees are less 
correlated. The results of each of the trees are added 
together after the tree is trained to give the final prediction 
by the Random Forest. It uses majority voting in the 
classification problem; the output given in the end is the 
class on which most of the trees predict. It averages the 
meaning of regression operations of each tree. This 
ensemble method generates a higher overall performance by 
reducing the variance and maintaining the low bias.  
 
6. Regressor Algorithms 
Our results were estimated using several machine learning 
algorithms and evaluated to ensure maximum efficiency. In 
this study, we used several machine learning methods to 
predict agricultural productivity. The hyperparameter 
adjustment algorithm based on optimizers was implemented 
in our study so that machine learning algorithms would 
perform better. We also performed a comparative study 
between these models, which comprise: 
 
Random Forest Regressor (RFR) 
Rationale: The ability to learn the ensemble that the 
Random Forest Regressor (RFR) has to make prediction is 
more correct and more permanent than the single decision 
trees, and thus the use of Random Forest Regressor (RFR). 
Being able to process large datasets that contain many input 
variables, it can be of great use in predicting agricultural 
productivity. 
 
Advantages: RFR reduces over fitting and increases 
generalization to out-of-sample by averaging predictions 
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 across multiple decision trees which are trained with 
bootstrapped training sets of data. It gets the non-linear 
relationships appropriately and handles outliers and missing 
values. It is also informative concerning information on 
feature importance. 
Useful to determine the principal causes of crop yield.  
 
Use Case: RFR applies to the high-dimensional complicated 
data in which there is a diversity of interconnected 
agricultural features such as crop types, soil, and the 
weather. It provides accurate and consistent yield forecasts 
even in case noisy data exists. 
 
Optimization: The RFR was improved by varying the 
minimum number of samples required to split or generate a 
leaf (min_samples_split, min_samples_leaf), the number of 
trees (n_estimators), the tree depth (max_depth), and the 
number of features considered at each split (max_features). 
To determine the optimal settings, five-fold cross-validation 
was facilitated by grid search and random search. 
 
Gradient Boosting Regressor (GBR) 
Rationale: I used Gradient Boosting Regressor (GBR) 
because it uses the outstanding ability to build strong 
predictive models through sequential correction of the errors 
made by the previous models. On that basis, it is fairly 
efficient in predicting complex patterns in data sets 
pertaining to agriculture. 
 
Advantages: GBR is an efficient method of ensembles 
which employ a scheme of boosting to combine weak 
learners, which are typically decision trees. The purpose of 
training every tree can be to decrease the remaining errors of 
its ancestors. GBR better models non-linear relationship 
compared to the bagging methods due to the sequential 
learning nature of GBR. When regularization and early 
halting are applied adequately, then it is not prone to over fit 
in comparison to conventional models.  
 
Application: GBR is suitable to estimation of agricultural 
productivity in tough situations. It also turns out to be 
particularly good on data on which small improvements in 
accuracy of prediction might be yielded by learning about 
the future of the residuals using the prior predictions. 
 
Optimization: GBR was optimized using hyper parameters 
n_estimators, learning rate, max_depth, and subsampling 
ratio. 
 
6.3. Support Vector Regressor (SVR) 
Support Because it can handle high-dimensional data and 
describe non-linear interactions between features and targets 
using kernel functions, the Vector Regressor (SVR) is used. 
It particularly does well in a case where the number of 
characteristics in the data is huge as compared to the 
samples. 
 
6.3.1. Advantages: SVR is predictive in nature and can be 
reliably applied to any given data set as it establishes a 
perfect hyperplane in a high-dimensional space by fitting the 
training data with a certain tolerance (epsilon). It supports a 
variety of kernel functions (linear, polynomial, and RBF), 
allowing it to capture both linear and nonlinear interactions.  

6.3.2. Use Case: Agricultural yield datasets with complex, 
non-linear connections between crop production and 
environmental factors may be effectively modeled using 
SVR. It shines when working with standardized or 
normalized features.  
 
6.3.3. Optimization: Optimization involves tuning key 
hyperparameters such as kernel type (linear, polynomial, or 
RBF), regularization parameter C, epsilon (ε), and gamma 
(γ). The kernel transforms data into higher dimensions, 
while C balances margin width and error. ε establishes the 
margin of tolerance, while γ affects model adaptability. Grid 
Search and Random Search, coupled with 5-fold cross-
validation, were employed to determine the best parameter 
combination to avoid overfitting and improve predictive 
accuracy. 
 
F. Performance Metrics 
The efficacy of feature selection and classification 
algorithms were assessed in this work using the F1-score, 
recall, accuracy, and precision measures. The regression 
approaches for yield were tested using the metrics R² score, 
MAE, and RMSE, as shown below.  
 
1. Accuracy 
In classification tasks, accuracy is a crucial metric as it 
shows what proportion of guesses were right relative to the 
total number of predictions. As a whole, it shows how well 
the model is doing by showing how often it occurs. 
Regardless of the distribution of classes, the model 
consistently produces correct forecasts. 
 
2. Precision 
Accuracy is obtained when the number of correct 
predictions is divided by the total number of positive events 
predicted. The number of correct predictions of positive 
outcomes is shown. When a model has excessive accuracy, 
it generates few false positives, which is particularly 
noteworthy in situations when there is a substantial penalty 
for producing an incorrect positive prediction. 
 
3. Recall 
The sensitivity, true positive rate, or recall of a model is a 
measure of how well it can detect real positive instances. 
When it's important to catch every instance of a certain 
class, it helps cut down on false negatives. 
 
4. F1-Score 
The F1 score is the outcome of harmonically averaging 
recall and accuracy. It gives an even measure that takes both 
the good and negative sides of the coin into consideration. 
When working with imbalanced datasets, where accuracy 
alone might be deceiving, the F1-score comes in handy. 
 
5. R² Score 
R2 is a statistic that measures how well a model fits the 
data. It indicates how well the independent variables can 
predict the variation in the dependent variable. A range of 0 
to 1 is used, where 1 corresponds to a perfect forecast and 0 
means that the there is no variation explained by this model.  
 
6. Mean Absolute Error (MAE) 
The MAE is the mean value of the size of errors in a set of 
forecasts and does not put importance on their way. It is the 
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 average of absolute projection-actual differences. In 
notation, MAE = (1/n) 01 i=1 n(y i - yi). 
 
7. Root Mean Squared Error (RMSE) 
RMSE is determined by calculating the square root of the 
average of the squared differences between the predicted 
and observed values. It is more prone to outliers since it is 
harsh on larger errors than is the case with MAE. The 
equation is: 
RMSE = √[(1/n) Σ (yᵢ - ŷᵢ)²]. 
RMSE is very beneficial in prediction tasks when big errors 
are undesirable. 

Experimental Results and Analysis 
The experimental setup and results based on the use of 
various machine learning models for yield prediction in 
agriculture are presented here. The evaluation of the models 
involved the use of complex feature selection methods and 
sampling in order to resolve to enhance the level of 
performance output using imbalanced datasets. To carry out 
a comparison study, the experimental results with key 
performance measures are listed in a systematic order as 
below. These findings shed light on the efficiency of each 
strategy in improving prediction accuracy and model 
robustness. 

 
Table 1: A comparison table of sustainable agriculture feature selection strategies using different machine learning algorithms 

 

Feature Selection Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

RFE 

Naive Bayes 92.33 92.45 92.33 92.22 
Decision Tree 91.57 91.56 91.52 91.85 

SVM 90.86 90.72 90.76 90.85 
Random Forest 92.83 92.66 92.83 92.51 

KNN 91.53 91.65 91.65 91.65 

BORUTA 

Naive Bayes 94.33 94.67 94.63 94.63 
Decision Tree 93.68 93.78 93.68 93.67 

SVM 93.37 92.91 93.37 93.41 
Random Forest 94.73 94.78 94.73 94.73 

KNN 92.89 93.14 92.89 92.89 
 

Naive Bayes and Random Forest both exhibit consistently 
high performance on all measures when compared to Boruta 
feature selection and RFE in the classification table. 
Regardless of the feature selection strategy employed, 
models such as SVM often perform worse in comparison. 
Both KNN and Decision Tree provide outcomes that are 

modest and rather consistent. Table 1 shows that choosing 
between RFE and Boruta is less important for performance 
than choosing a model, as both seem to be successful in 
identifying relevant features with only minor differences in 
their effects on various models. 

 
Table 2: Comparison table for various feature sampling techniques across various machine learning algorithms for Sustainable Agriculture 

 

Technique Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Smote 

Naive Bayes 94.73 94.77 94.73 94.73 
Decision Tree 93.56 93.66 93.56 93.56 

SVM 92.17 92.91 92.17 92.11 
Random Forest 94.66 94.73 94.66 94.66 

KNN 93.03 93.27 93.03 93.03 

Rose 

Naive Bayes 94.70 94.75 94.72 94.73 
Decision Tree 93.95 94.03 93.95 93.95 

SVM 92.17 92.91 92.17 92.11 
Random Forest 94.60 94.65 94.60 94.63 

KNN 92.89 93.14 92.89 92.89 
 

In the classification results table, we can see that ROSE 
consistently produces somewhat higher model performance 
across all assessment measures when compared to SMOTE, 
the sampling strategy. Random Forest achieved 64.66% and 
94.00% accuracy rates, correspondingly. Regardless of the 
sample approach, this model consistently shows robust and 
stable results, making it the best performer. 

All of the models show that Naive Bayes regularly performs 
well.  
While Decision Tree and KNN demonstrate moderate 
results, SVM continues to be the least effective model. 
According to Table 2, these findings indicate that ROSE is a 
better tool for improving class balance than SMOTE, which 
leads to small improvements in model accur 

 
Table 3: Comparison table for various regression algorithms for Sustainable Agriculture 

 

Model R² Score MAE RMSE 
Random Forest 91.616 3.681 4.606 

Gradient Boosting 90.738 3.893 4.841 
SVR 90.438 3.956 4.919 

 
According to the table comparing regression models, 
Random Forest is superior than Gradient Boosting and SVR 
on all measures. Its R² value of 91.616% is the highest for 
Random Forest, suggesting a more accurate data fit. It also 
has the best MAE and RMSE error levels, which means it 

makes more reliable predictions. Table 3 shows the SVR 
results, which indicate relatively low quality performance 
with high error values and significantly reduced ability to 
explain data variation. Gradient Boosting follows closely 
behind. 
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 Table 4: Crop prediction, Approximate yield prediction (quintals/hectare) and recommended fertilizer for various case studies (inputs)of N, 

P, K, Temperature, Humidity, pH and Rainfall 
 

Parameter Case-1 Case-2 Case-3 Case-4 
Nitrogen 12 91 10 84 

Phosphorus 61 35 75 36 
Potassium 19 39 17 42 

Temperature 20 23 18 25 
Humidity 24 81.12 68 81.2 

pH 5 6.5 7.1 6.8 
Rainfall 68 206 52 170 

Predicted Crop Banana Rice Lentil Jute 
Approximate Yield (q/ha) 28.83 70.02 32.71 63.42 
Recommended Fertilizer Urea DAP Urea MOP 

 
Based on seven user-provided input features—temperature, 
humidity, pH, rainfall, phosphorus, potassium, and 
nitrogen—the system efficiently suggests the best crop and 
approximate yield of the crop, also recommends a fertilizer 
to optimum yield shown in Table 4. To show the predictive 
power of the model, four different scenarios were examined. 
In Case 1, the system recommends urea as the fertilizer and 
bananas, which have an approximate yield of 28.83 
quintals/hectare. With DAP as the fertilizer and high 

nitrogen and rainfall levels, Case 2 forecasts a yield of 70.02 
quintals/hectare for rice. With a moderate yield of 32.71 
quintals/hectare, the inputs for Case 3 favor lentils and 
suggest urea. With MOP as the recommended fertilizer, Jute 
is predicted to yield 63.42 quintals/hectare in Case 4, which 
is characterized by high nitrogen and humidity. The system's 
capacity to produce accurate crop, yield, and fertilizer 
recommendations suited to different input conditions is 
demonstrated by this investigation. 

 

 
 

Fig 2: Comparison of various performance metrics for various machine learning models for RFE 
 

With an accuracy of 92.83%, Random Forest stood out of 
the machine learning models that were assessed as the most 
reliable and balanced performance. Taking into account all 
relevant assessment criteria. Decision Tree and Naive Bayes 
showed very consistent robust and stable results, just after 
that. The other two methods, Support Vector Machine and 
KNN, worked.  

Not as good with KNN and generally having more 
problems. While SVM excelled in certain areas, it was 
missing the overall equilibrium displayed by the best-
performing models. Figure 2 shows the results of these 
comparisons, which indicate how effectively Random Forest 
and other ensemble approaches work when supported by 
feature selection procedures in delivering solid classification 
results. 
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Fig 3: Comparison of various performance metrics for various machine learning models for BORUTA 
 

The two top choices here, Random Forest and Naive Bayes, 
have extremely consistent and almost identical performance 
across all relevant assessment parameters. Decision Tree's 
performance is good, but it is not up to par with the best two 
models. A modest level of performance is shown by K-
Nearest Neighbors, with noticeable variances in balance and 
overall scores. While Support Vector Machine does 

somewhat better in terms of accuracy, its reliability is worse 
because to its poor performance in other domains. When 
combined with effective feature selection methods, 
probabilistic and ensemble models prove to be quite 
beneficial. See Figure 3 for the Random Forest with a 
94.73% accuracy rate. 

 

 
 

Fig 4: Comparison of various performance metrics for various machine learning models for SMOTE 
 

Consistently, when SMOTE is used, the most 
comprehensive and successful outcomes according to all 
pertinent criteria are produced by Random Forest (94.66% 
accuracy) and Naive Bayes (94.73% accuracy). Decision 
Tree shows a little decline in performance compared to the 
top models, but it still does quite well overall. In terms of 
overall effectiveness and balance, K-Nearest Neighbors is 

still behind, albeit making considerable improvements. 
Support Vector Machine remains the least effective model, 
with significant variance across measures. This suggests 
that, as seen in Figure 4, Although certain models may 
perform better with synthetic oversampling, more 
generalizable models show the most gains. 
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Fig 5: Comparison of various performance metrics for various machine learning models for ROSE 
 

The very constant and better performance of the Random 
Forest and Naive Bayes models across all assessment 
metrics, with accuracies of 94.70% and 94.60% when 
employing the ROSE sampling strategy, strongly indicates 
dependability. As a result, the Decision Tree maintains its 
competitive edge and ranks second with balanced scores, 
while other algorithms such as SVM and K-Nearest 

Neighbors only show marginal improvement. Despite 
improvements, Support Vector Machine continues to lag 
behind competing models because to its unpredictable 
metrics. Figure 5 shows that ROSE improves the 
performance of models with significant generalization 
capabilities, reaffirming the superiority of ensemble and 
probabilistic approaches. 

 

 
 

Fig 6: Comparison of performance metrics of various machine learning models for Regression Models 
 

Figure 6's comparison chart shows that across all three 
criteria, Compared to the other two regressors, the Random 
Forest model consistently performs better. A 91.616% R2 
Score suggests a greater capacity to explain the variability in 
the yield data, which is indicative of a better fit. Random 
Forest consistently outperforms other methods in terms of 
Mean Absolute Error (MAE), showing less variation from 
the real values and hence the best accuracy in predictions. 
Root Mean Squared Error (RMSE) comparisons show that it 
is quite resilient, with the smallest significant mistakes. 
While both Gradient Boosting and SVR have similar 
tendencies and perform well, they are only slightly inferior 

than Random Forest across the board. Finally, of the three 
models considered for this regression task, Random Forest 
clearly stands out as the most trustworthy. 
 
Conclusion and Future Scope 
1. Conclusion 
The project has been exemplified in the way that it has used 
machine learning as an application in agriculture to be more 
data-driven and knowledgeable. The categorization models 
showed a good level of performance in providing a 
recommendation on the appropriate crop to grow and 
regression model was also good in determining the 
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 expectedly would be generated by the crop at different 
conditions. Data preparation, feature selection using RFE 
and Boruta, dataset balancing using SMOTE and ROSE, and 
training classification and regression models are the key 
steps in the workflow. Classification methods (Naive Bayes, 
SVM, KNN, Decision Tree, and Random Forest) were used 
for crop prediction, and Random Forest Regression was 
used for yield prediction. 
 
2. Future Scope 
1. Future work possibilities include an increase in the 

amount of data, adding more crop varieties, regional 
variances, and the current weather curve. At present, the 
model is calibrated on a restricted range of crops and 
conditions and might not be easily transferred to a wide 
range of agricultural settings. Using data across 
geographical zones and crop growing seasons, the 
model may be able to learn larger incoming trends and 
adjusted to agricultural practices that are unique to each 
location helping to increase its applicability to a greater 
variety of farming situations. 

2. Complementary, better results could be obtained by 
testing more powerful machine learning methods. 
Although standard models (e.g., decision trees and 
linear regression) can be interpreted, more complex 
algorithms (e.g., ensemble learning, gradient boosting 
(e.g., XGBoost, LightGBM), and deep learning models 
(e.g., artificial neural networks, LSTM networks)) can 
potentially be more accurate and/or robust. The above 
approaches are particularly useful in the analysis of 
interactions and non-linear correlations between 
variables, very common in agricultural data. Another 
way in which predictive performance may be improved 
is through exploring a model stacking or hybrid 
approach to combining the different strengths of 
different algorithms. 
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