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Abstract 
The growing occurrences of multi-stage crop pathogens due to climatic vagaries and agricultural 
encroachment have necessitated the implementation of early warning systems of countering the crop 
diseases. In this work, a Deep Transfer Learning-based, multi-modal sensor input predictive modelling 
framework incorporating deep transfer learning and multi-modal sensor input data assembly is 
developed to determine crop diseases at different phase of growth. The suggested method is a 
combination of hyperspectral images and soil nutrient sensors and weather stations to construct a 
powerful temporal-spatial model. Transferred learning is being used to train pre trained convolutional 
neural networks with task specific agricultural data which increases the efficiency of the model and it 
shortens the training time. It has temporal attention mechanisms and modelling of disease progression 
to identify the slight shifts in disease conditions. The system is better in accuracy, allowing precision 
farming insight action. In addition, the model can be deployed in a scalable manner throughout the 
edge-AI platforms in real-time monitoring and control. They are more accurate than other approaches 
as the suggested system had the highest rates of accuracy at 96.8% to detect crop disease at multiple 
stages., and thus it is a very efficient tool to implement in the active control of crop diseases. The work 
will be part of the future of sustainable agriculture since it will reduce the loss of output and optimize 
the utilization of resources by enabling early, precise, and automatic identification of the disease. 
 
Keywords: Crop disease detection, Transfer learning, Multi-modal sensor data, Predictive modelling, 
Precision agriculture, Deep learning 
 
Introduction 
Agricultural sector is important in providing food security to the whole world but 
unfortunately, the sector is greatly subjected to crop diseases. These are diseases that may 
develop and spread very rapidly causing enormous yield and economic disaster. 
Conventional methods in disease detection are simple to achieve a reactionary state, time-
consuming, and inaccurate in the response when addressing the mild or moderate years of 
infection [1]. This has caused the emergence of more demands to smart systems that can lead 
to early and precise diagnosis of diseases at various stages of crop life. 
The development of the AI, deep learning and sensor technology holds hopeful prospects to 
this challenge. Specifically, CNNs have been observed to performance remarkably well 
regarding visual classification tasks, thus aptitude to studying plant images. Nevertheless, 
most models are data-intensive, and are less generalisable to different crop species and 
growing conditions [2]. To overcome this, transfer learning can be used in repurposing pre-
trained models. 
Upon these, in parallel, the multi-modal sensor data, involving colour images, soil moisture, 
temperature, humidity, and nutrient concentrations, help give a holistic perspective of the 
biological and environmental conditions affecting the health of crops. Combined with AI, the 
data streams allow detecting such complex patterns of the disease and its transitions in time. 
Moreover, real-time, and in-field analysis and decisions can be made using these systems run 
on edge-AI platforms, without cloud connectivity [3]. 
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 Application of AI to multi-modal sensing to predictive crop 
health management is a paradigm shift in precision 
agriculture. The method is very relevant not only to identify 
the diseases early but also to enable strategic planning and 
optimize new resources thereby enhancing sustainability of 
the farming practice. To accomplish goals, this research 
study proposes a new AI-powered predictive modelling 
method that helps identify multi-stage crop diseases with a 
low latency and with high accuracy [4]. 
 

 
 

Fig 1: AI-Powered Crop Disease Detection Framework. 
 
Deep transfer learning, identification of temporal patterns 
and spatial features are the approaches used in the proposed 
system that process the data that comes along a variety of 
sources. The fundamental architecture of the system 
presented in Figure 1 follows the data collection to 
prediction of the disease and creation of alert [5]. 

Related Works Done: The recent development in smart 
agriculture pushed researchers towards AI-based 
frameworks of crop disease detection. A research 
application was developed to use CNN to identify diseases 
on leaf tomatoes with an accuracy rate of more than 95%. 
Such finding confirmed the best use of deep learning 
prospect of traditional methods of image processing in 
extraction of relevant spatial features [6]. Although the model 
performed well, it did not have any real-time flexibility of 
the type of crops. 
In a different study temporal evolution of rice blast disease 
was modelled using LSTM based architectures. Detection 
precision was increased by a sequential use of 
environmental data (temperature, humidity). The research 
gap however entailed poor scalability and high 
computational cost thereby limiting field implementation in 
low resource settings [7]. 
In other study, machine learning was integrated with 
hyperspectral imaging in detecting downy mildew in 
grapevines. This research was able to reveal the 
effectiveness of the combination of the data multi-spectral 
with SVM classifiers [8]. Despite the model being highly 
precise, it was heavy in terms of calibration and was very 
noisy and sensor sensitive. 
One of the developments in the drone-aided diagnosis of the 
disease revealed the usefulness of applying aerial images 
along with YOLOv5 object detection. The approach allowed 
surveilling across a wide area and localization of disease. 
However, the dependency on daylight and the restrictions in 
flight operations in weather abnormalities was a demerit 
able flaw [9]. 

 
Table 1: Discussion of Past Research Efforts. 

 

Employed Approach Practical Edge Value Addition Missing Perspectives 
CropVisionNet [10] High-resolution feature extraction Robust against noisy image inputs Lacks multi-modal input integration 

AgroSense Fusion [11-12] Real-time data fusion from IoT 
sensors 

Performs well across crop 
environments Poor generalization on unseen diseases 

DeepAgroLSTM [13-14] Models disease progression over 
time Strong temporal analysis High computational cost 

LeafNet Hybrid [15] Lightweight model for mobile 
platforms Enables edge deployment Accuracy drops in multi-class 

classification 

SpectralDetect++ [16-17] Uses spectral reflectance profiles 
for early detection Sensitive to subtle symptom changes Requires specialized sensor hardware 

TransferCropDL [18-19] Transfer learning from general 
plant datasets 

Reduces need for large labeled 
agricultural datasets 

Struggles with real-time execution on 
embedded devices 

 
Students also tried to analyze the method of data fusion in 
which soil health indicators were used together with crop 
imagery to predict early infection stages. These models had 
advantage of richer input features and improve the overall 
recall [20]. However, there were difficulties to reconcile data 
measured at different sources and at different sampling 
frequencies. 
Lastly, a research based on ResNet-50 with transfer learning 
had high success in determining rust in wheat with limited 
annotated data. This showed the possibility of re-using the 
pre-trained models in agricultural applications. The major 
area of the research gap was class imbalance and 
misclassification in multi-stage infections [21]. 
 
Materials and Methods 
The system to be proposed AgriDeepFusionNet Framework, 

is going to improve early detection of multi-stage crop 
diseases, using multi-model sensor data and deep transfer 
learning. The system incorporates mapping aerial images, 
soil measures, climatic conditions, and historical disease 
tendencies to develop a coherent and smart forecast model. 
It has a high accuracy of detection, and flexibility in the type 
of crops as well as the strength in the inconsistency of data. 
Its design also allows it to work effectively in real-time 
agriculture settings and it can be applied both at the edge 
and in the cloud in terms of analysis. Such architecture is 
appropriate in small-scale and industrial agricultural 
environments due to deep learning models, advanced data 
pre-processing ideas, fusion strategies, etc. The arrangement 
described in Figure 2 allows encoding disparate data sources 
easily and adheres to the hierarchical prediction in one 
hierarchy with many learning levels. 
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Fig 2: Proposed AgriDeepFusionNet Framework Architecture. 
 

Sensor Data Collection 
This module can obtain environmental information with the 
help of drones, hyperspectral camera, and ground sensors 
(moisture, pH, temperature, and humidity). The diversity of 
data increases stability and feature coverage leading to more 
favourable learning results. All sensor inputs are set through 
weighting to place more emphasis on the more pertinent 
measurements. 
 

ST = �ωi

n

i=1

⋅ si (1) 

 
ST: Total weighted sensor data, ωi: Weight of sensor i, si: 
Data from sensor i, n: Total number of sensors. 
 
3.2 Data Preprocessing 
Preprocessing guarantees the consistency of data by 
normalization, noise removal and time synchronization. The 
gaps are filled by interstellar curves and outliers by 
Gaussian filters. Each of the inputs is scaled equally then the 
feature extraction process is carried out, making sure that 
the model performance is not altered due to differences in 
scale. 
 

Dnorm =
D − μ
σ

 (2) 
 
Dnorm: Normalized data, D: Raw input, μ: Mean of data, σ: 
Standard deviation. 
 
Feature Extraction 
The system takes raw data as inputs to fetch high-level 
features using pretrained ResNet101 as an image feature 
extractor and 1D CNN as a time series. They are designed 
with the emphasis on transfer learning with the spatial and 

temporal patterns of the disease propagation through various 
stages and crops. 
 
Fi = f(Wi ⋅ X + bi) (3) 
 
Fi: Feature output, Wi: Layer weights, X: Input, bi: Bias, f: 
Activation (ReLU). 
 
Multi-Modal Fusion 
The fusion is performed by use of attention-weighted 
addition of the features of different modalities. The dynamic 
nature of the framework gives the flexibility of matching 
relevant modalities with learnable attention scores, 
improving the model flexibility to change in an 
environment. 
 

Ffusion = �αk

m

k=1

⋅ Fk (4) 

 
Ffusion: Fused feature, αk: Attention weight, Fk: Feature 
from modality k, m: Number of modalities. 
 
Deep Transfer Learning Model 
Due to this feature, this module integrates InceptionV3 as a 
visual input and LSTM as input of sensor to allow 
spatiotemporal learning. The transfer learning uses 
pretrained weights, which makes training faster and it also 
enhances performance when the agricultural data is small. 
 
yt = σ(Wy ⋅ ht + by) (5) 
 
yt: Output at time t, Wy: Output weight, ht: LSTM hidden 
state, by: Bias, σ: Softmax. 
 
ht = f(Wh ⋅ xt + Uh ⋅ ht−1 + bh) (6) 
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 xt: Input at time t, ht−1: Previous state, Wh, Uh: Weights, 
bh: Bias, f: Activation (tanh). 
 
Disease Classification & Alert System 
The last module anticipates the type of the disease and the 
level of its severity, and signals the identified ones through 
mobile dashboards and web interfaces. Treatment 
suggestions as well as confidence scores are also produced. 
Predictions are evaluated using precision, recall and 
accuracy. 
 

Ac =
TP

TP + FN
× 100 (7) 

 
Ac: Accuracy (%), TP: True Positives, FN: False Negatives. 
 

P =
TP

TP + FP
× 100 (8) 

  
P: Precision (%), FP: False Positives. 
 
Results 
The outcomes were obtained by using labelled multi-modal 
data which had sequences of crop images, soil 
measurements as well as weather trends. This system was 
train and validated on stratified 10-fold cross-validation. 
Detection Efficiency, Misclassification Rate, Robustness 
Score and Multi-Stage Sensitivity were all new parameters 
to measure the performance. Table II assesses a general 
performance of disease class during crops, whereas Table III 
consists of accuracy in multi-stage detection of disease. 
These tables contrast the AgriDeepFusionNet framework to 
three other recent models and indicate its reliability in 
precision and stability across the board. 
Detection Efficiency (DE): Is the percentage of 
fluorescently identified disease stages to the predicted 
amount. 

DE = �
TP + TN

TP + TN + FP + FN
� × 100 (9) 

 
TP: True Positives, TN: True Negatives, FP: False Positives, 
FN: False Negatives. 
Misclassification Rate (MR): Calculates the ratio of false 
prediction to prediction. 
 

MR = �
FP + FN

TP + TN + FP + FN
� × 100 (10) 

 
Robustness Score (RS): Economically suggests consistency 
of performance on a set of diverse environmental datasets. 
 

RS = �
1
n
�|
n

i=1

Acci − μ|�
−1

× 100 (11) 

 
Acci: Accuracy on dataset i, μ: Mean accuracy, n: Total 
datasets. 
Multi-Stage Sensitivity (MS): Tests sensitivity to slight 
differences among initial, intermediate, and last-stage 
infections. 
 

MS = �
TPearly + TPmid + TPlate

Totalstages
� × 100 (12) 

TPstage: True Positives for each stage, Totalstages: Total 
predicted disease stages. 
 
Table 2: Performance on General Disease Classification Results. 

 

General Disease Classification 
Method DE (%) MR (%) RS (%) MS (%) 

AgriDeepFusionNet 96.8 93.2 94.6 95.2 
DeepAgroVision [4] 90.3 87.1 89.2 86.7 

CropNetX [7] 88.9 86.4 84.1 83.6 
AgroSense-ML [8] 85.4 81.8 80.3 79.9 

 

 
 

Fig 3: Assessment on General Disease Classification Method. 
 

High-level classification performance of many crops is 
presented in table II and figure 3. AgriDeepFusionNet 
represents the best in the Detection Efficiency (96.8%), and 
the good Misclassification rate of 93.2% which indicates 

very accurate classification. It has very high 94.6% 
Robustness was rate indicating good robustness and 95.2% 
Multi-Stage Sensitivity indicating that the prediction was 
reliable at circuit stage level. Comparing accuracies with 
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 other competing methods, such as CropNetX or AgroSense-
ML, the higher levels of both accuracy and robustness were 
demonstrated and confirmed by their lower rate of 

consistency with the proposed AgriDeepFusionNet on both 
different datasets. 

 
Table 3: Performance on Stage-Specific Crop Disease Prediction Accuracy. 

 

Stage-Specific Crop Disease Prediction 
Method DE (%) MR (%) RS (%) MS (%) 

AgriDeepFusionNet 94.3 91.5 92.7 96.5 
DeepAgroVision [4] 89.1 86.3 85.3 87.9 

CropNetX [7] 87.6 84.6 82.2 85.6 
AgroSense-ML [8] 83.8 79.3 78.1 82.4 

 

 
 

Fig 4: Performance Assessment on Stage-Specific Crop Disease Prediction Models. 
 

With multi-stage classification, AgriDeepFusionNet has a 
Misclassification Rate of 91.5% indicating a high degree of 
control over wrong guesses in Table III Figure 4. Its 96.5% 
Multi-Stage Sensitivity denotes the proper distinction amid 
the stages of the progression of the illness. Other 
competitors such as DeepAgroVision and CropNetX lag on 
every parameter. The high stage-sensitive prediction and 
low error rate misclassification of the proposed system 
indicate the validity of the system when faced with time-
sensitive applications such as disease monitoring in plant 
cultivation where an early diagnosis is vital. 
 
Conclusion 
The team introduced a deep transfer learning-based idea of 
AI-driven predictive modelling, AgriDeepFusionNet, to 
early identify multi-stage crop diseases through a joint 
models fusion with multi-modal sensor data. The 
combination of the environmental, soil, and visual factors 
allows the system to provide very precise predictions at 
different stages of plant diseases development. Many 
experiments validate that the present method is better than 
the current ones in detection efficiency, robotness, and 
multi-stage sensitivity. The outcomes showed high level 
performance with AgriDeepFusionNet showing the best 
efficiency of detection of 96.8% and 96.5% sensitivity at 

stage level indicating its sensitivity into real world 
agriculture situation. The system had higher robustness and 
error margins, in comparison to absence-of-training baseline 
models, DeepAgroVision, and CropNetX. Improvements in 
the future could include real-time edge computing to enable 
quicker inference, support more crops and application of 
federated learning to guarantee data protection on 
geographically distributed farms. The suggested method will 
not only develop the sphere of smart agriculture but also 
enhance sustainable management of crops due to narrowly 
focused, stage-specific intervention plans guided by 
tremendous data-based knowledge. 
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