

ISSN Print: 2664-844X
ISSN Online: 2664-8458
NAAS Rating (2025): 4.97
IJAFS 2026; 8(1): 184-187
www.agriculturaljournals.com
Received: 25-11-2025
Accepted: 27-12-2025

DK Swain
Department of Agricultural Statistics, Faculty of Agricultural Sciences, Siksha O Anusandhan, Deemed to be University, Bhubaneswar, Odisha, India

D Bhattacharya
Professor & Head, Department of Agricultural Statistics, Palli Siksha Bhawan, Visva-Bharti, Bhubaneswar, Odisha, India

Forecasting of pest induced yield loss in rice using Damped Trend Exponential Smoothing model for Balesore District of Odisha

DK Swain and D Bhattacharya

DOI: <https://www.doi.org/10.33545/2664844X.2026.v8.i1c.1139>

Abstract

The production of rice requires to be elevated to meet the demand for growing population. As the cropping area is shrinking due to urbanization, biotic and abiotic stress; there are two ways through which the production can be enhanced. One method with development of HYVs in accordance with micro climate and other one diminishing the crop loss through biotic stresses like pest, disease etc. This study has focused on prediction of pest induced yield loss for future based on past time series data, using Holt's Damped Trend method. Firstly, by using Dhaliwal method, yield loss due to pest in rice is obtained from 2001-2018. Using these data, Holt's damped trend method for prediction is carried out. The best parameter combination is selected based on their performance on training and testing data set of yield loss due to pest and the combination with least error has been selected for this data. The parameter combination $\alpha=0.7$, $\beta=1$, $\varphi=0.7$ has least information criteria and error metrics. Based on the chosen parameters, prediction for next seven years has been carried out along with their confidence interval.

Keywords: Damped trend exponential smoothing, damping factor, forecasting, MAPE, pest induced yield loss

Introduction

In India, majority of the population consumes rice as a staple food and rice is the primary agricultural commodity. It is the farming fraternity's oldest source of income. The production of rice needs to be increased to meet the demand of growing population. Earlier agriculture production was carried out in large cultivated areas, whereas now-a-days, urbanization diminishes the cropping area as a result production becomes less. Moreover, disengagement of the farmer fraternity from doing agriculture for several reasons like environmental calamities (drought, flood, etc.), ecological stress (pest and disease attack), stress due to nonavailability of marketing place, increase in cost of cultivation and lack of stimulation to the farming community are significant causes of less production.

Odisha, one of the potential states of India, constitutes ten agro-climatic zones with thirty districts out of which there were only 13 in numbers before 1993. The farmers of the State show less interest in agricultural activities due to shared environmental and biological hazards. Cyclones hit Odisha almost every year. The climate change scenario in Odisha is reflected very well in the form of erratic rainfall, late onset of monsoon, rise in temperature, which readily affects the rice life cycle from sowing to harvesting stage.

With the development of new crop varieties, pests of crop mutate themselves according to the level of hazards. The erratic climate change pattern also helps the pests to grow and multiply faster. Different pests infest the crop at different growing stages, viz., vegetative, reproductive, and ripening. The list of major pests with their damaging growth stages along with stage of crop infestation are enlisted in Table-1.

Corresponding Author:

DK Swain
Department of Agricultural Statistics, Faculty of Agricultural Sciences, Siksha O Anusandhan, Deemed to be University, Bhubaneswar, Odisha, India

Table 1: Key pest of rice, their damaging stage and affected plant growth stages

SI No.	Pest	Scientific Name	Damaging stage of Pest	Stage of crop infestation
1	Yellow Stem Borer	<i>Scirpophaga incertulas</i> (Lepidoptera: Pyralidae)	Larva	Vegetative and Reproductive
2	Leaf Folder	<i>Cnaphalocrocis medinalis</i> (Pyralidae: Lepidoptera)	Larva	Vegetative
3	Rice Brown Plant Hopper (BPH)	<i>Nilaparvata lugens</i> Stal (Hemiptera: Delphacidae),	Nymph and Adult	Vegetative and Reproductive
4	White-backed Plant hopper (WBPH)	<i>Sogatella furcifera</i> (Horvath),	Larva	Vegetative and Reproductive
5	Rice Swarming Caterpillar	<i>Spodoptera mauritia</i> (Noctuidae: Lepidoptera)	Larva	Vegetative
6	Case worm	<i>Nymphula depunctalis</i>	Larva	Vegetative
7	Rice hispa	<i>Dicladispa armigera</i>	Larva and Adult	Vegetative

The insect pest attack severely damages the crop by accounting for around 25% of crop loss (Singh, 2014; Dhaliwal & Arora, 2015)^[1] in the case of rice crops. Particular for any particular pest the economic threshold level (*ETL*) for a pest determines the pest management steps. Above *ETL* directs to adopt proper management practices to prevent the economic injury level (*EIL*) of crop due to pest. The pest incidence density defines the *ETL* for a particular pest, whereas the lowest population of pests that will cause economic damage is called *EIL*. In Odisha, based on the severity of the pest attack, the cultivated area is classified into three categories, i.e. (i) Low intensity, (ii) Moderate intensity, and (iii) High intensity. The low infestation intensity is determined below *ETL*, whereas the rest two categories are classified above *ETL*, which signifies taking the necessary steps to prevent *EIL*.

Materials and Methods

The yield data of Balesore district has been obtained from Department of Agriculture and Farmers' Empowerment, Government of Odisha (GoO). The yield loss data have been estimated and the detailed procedure are discussed later. The period of yield loss data is considered as 2001 to 2018.

Analytical Procedure

Estimation of yield loss of rice due to pest

Government of Odisha has published two *kharif* manual in the year 2001 and 2007 respectively. This manual contains the rice varieties are suitable and grown in different agroclimatic zones along with their standard yield. Based on that for the selected districts we calculated average standard yield by averaging the standard yield of varieties grown in that district in two periods viz. one from 2001 to 2007 and other one from 2008 to 2018. The difference between the average yield and observed yield will be considered as yield loss due to all other factors. Out of the total loss, 25% the total loss will be considered to be the loss due to pest (Dhaliwal et. al., 2015)^[1]. Likewise for each district from

2001 to 2018 the estimation of yield loss of rice due to pest was carried out.

Holt's Damped Trend or Damped Trend with Exponential Smoothing

This is an extension of Holts Linear trend that adds a damping parameter to regulate the trend from extrapolating too aggressively into the future. In this method the time series divided into three components viz., level L_t , trend b_t and damping parameter φ whose ranges are 0 to 1.

The equations for individual components are

$$L_t = \alpha Y_t + (1 - \alpha)(L_{t-1} + \varphi b_{t-1}),$$

$$b_t = \beta(L_t - L_{t-1}) + (1 - \beta)\varphi b_{t-1},$$

Finally, the forecast equation for m periods ahead is given by

$$F_{t+m} = L_t + b_t \cdot \left(\frac{1 - \varphi^m}{1 - \varphi} \right),$$

For $\varphi = 1$, this becomes Holts Linear Trend and for $\varphi = 0$, trend dies out completely and forecasts converge to level.

Results and Discussions

Estimation of rice yield loss due to pests

The *kharif* manual published by Department of Agriculture and Farmers' Empowerment, Government of Odisha (GoO) during 2001 and 2008 suggest the varieties recommended for different districts of Odisha. After obtaining the standard yield for each district, the yield loss has been obtained by differencing the observed yield from standard yield. The pest induced yield loss has been obtained by considering 25% of total yield loss. So, the yield loss due to pests is obtained from 2001 to 2018.

Table 2: Estimation of Yield loss due to pests of Balesore district

Year	Standard Yield (Kg/ha)	Actual Yield (Kg/ha)	Yield Loss (kg/ha)	Yield Loss due to pest (Kg/ha)
2001	4015.73	1733	2282.73	570.68
2002	4015.73	823	3192.73	798.18
2003	4015.73	1499	2516.73	629.18
2004	4015.73	1713	2302.73	575.68
2005	4015.73	1448	2567.73	641.93
2006	4015.73	1334	2681.73	670.43
2007	4015.73	1452	2563.73	640.93
2008	4125.58	1315	2810.58	702.65
2009	4125.58	1451	2674.58	668.65
2010	4125.58	1718	2407.58	601.90

2011	4125.58	2149	1976.58	494.15
2012	4125.58	1548	2577.58	644.40
2013	4125.58	844	3281.58	820.40
2014	4125.58	2003	2122.58	530.65
2015	4125.58	1474	2651.58	662.90
2016	4125.58	2720	1405.58	351.40
2017	4125.58	2175	1950.58	487.65
2018	4125.58	2473	1652.58	413.15

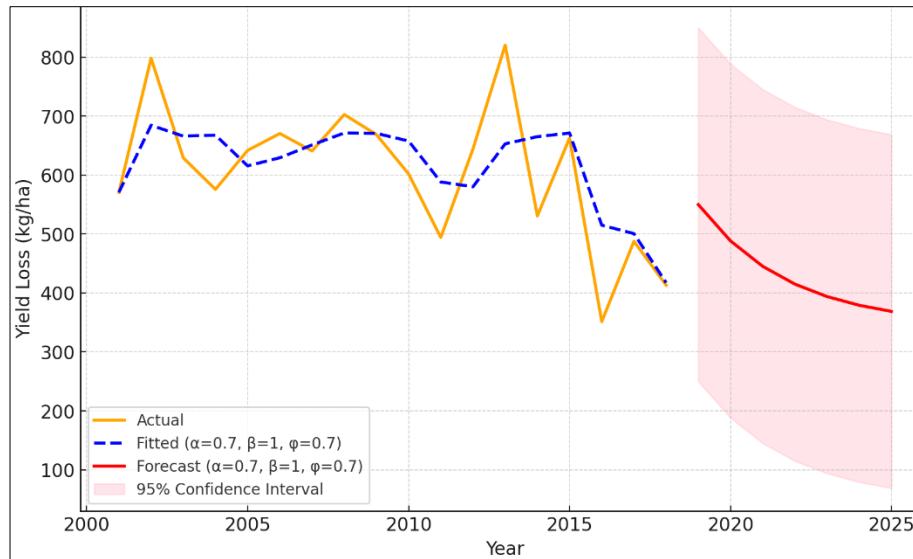
The Holt's Linear trend could not capture the trend properly which produced absurd results. But the Holt's damping trend yielded good results. The damping technique has been implemented to prevent the trend estimate from becoming too sensitive to data fluctuations. In Holt's method with two parameters, one for level smoothing (α) and the other for trend smoothing (β) if a damping factor (φ) is added, then this model turns to be a Holt's Damped trend model or Damped trend in exponential smoothing. For the seven districts, identification of best model parameters and forecasting the future would be carried out using Holt's Damped Trend model.

Prediction of rice yield loss due to pest for Balesore

The entire data (2001 to 2018) are splitted into training component and testing component in 80:20 ratio. After comparing multiple configurations of the Holt's damped

trend model for forecasting rice yield loss due to pests in Balesore district. The model with lowest information criteria values should be selected. The model with $\alpha = 0.7$, $\beta = 1$, $\varphi = 0.7$ emerged as the most balanced and accurate in information criterions as well as in error metrices. This model achieved an MAPE for testing data as 16.29% which is lowest among the selected α , β and φ and the MAPE for training data comes out to be 19.97% which indicates that the model fits well to the training and testing data sets. The chosen damping factor ($\varphi = 0.7$) ensures that the model accounted for trend without escalate excessively over the forecast horizon. Other error metrices like MAE, MSE and RMSE were also least as compared to other parameter combinations. After fitting the best combination of α , β and φ the observed vs forecast values for testing set data with their difference is checked to interpret the fit.

Table 3: Comparison of observed and in sample forecasted rice yield loss for testing data set.


Year	Observed yield loss(kg/ha)	Forecasted yield loss (kg/ha)	Absolute Difference	Test MAPE (%)
2015	662.895	549.864	113.031	16.29
2016	351.395	488.270	136.874	
2017	487.645	445.154	42.491	
2018	413.145	414.973	1.827	

Oni and Y.O. Akanle (2018) [4] studied on application of smoothing model to forecast cassava production. In their study they found that damped trend model exhibited better results than double exponential method. The damping factor furter smoothed the unnecessary spike in the dataset resulting better model fitting. Implementing, the final

chosen parameters to whole data set, the future forecasting values can be generated. For Balesore district, next seven-year (2019-2025) pest induced yield loss were predicted successfully along with 95% confidence interval to curb the uncertainty.

Table 3: Seven year forecast value with 95% confidence interval for rice yield loss due to pest in Balesore.

Year	Forecast (kg/ha)	Lower Bound (95%)	Upper Bound (95%)
2019	549.8648	249.9779	849.7517
2020	488.2705	188.3835	788.1574
2021	445.1545	145.2675	745.0414
2022	414.9732	115.0863	714.8602
2023	393.8464	93.95945	693.7333
2024	379.0576	79.17065	678.9445
2025	368.7054	68.8185	668.5924

Fig 1: Rice Yield Loss due to pest projection for Balesore

Conclusion

Diminishing the yield loss in rice is one of the method to increase the production. In this study, yield loss has been obtained by differencing the standard yield of the district and actual yield of the district. The pest induced yield loss has been estimated using the Dhaliwal's method. According to his method, 25% of total yield loss is due to pest. Based on the time series data of yield loss due to pests, the future yield loss due to pests has been forecasted using Holt's.

Damped Trend method. The best parameter combination having least information criterion and error metrics will be shortlisted to predict the future yield loss due to pests. The parameter combination $\alpha=0.7$, $\beta=1$, $\varphi=0.7$ has least information criteria and error metrics. It has obtained 16.29% MAPE for testing data set. Using this configuration, future forecast from 2019-2025 has been made with the 95% confidence interval.

Table 4: Performance metrics of Holt's Damped Trend model for Balesore rice yield loss due to pest under various α , β and φ .

Sl No.	Alpha	Beta	Phi	Train MSE	Test MSE	Train RMSE	Test RMSE	Train MAE	Test MAE	Train MAPE	Test MAPE	AIC	BIC	HQIC
1	0.7	1	0.7	23410.08	8329.885	153.004	91.268	124.505	73.556	19.974	16.290	150.853	154.048	147.675
2	0.7	0.9	0.8	24505.98	8413.310	156.544	91.724	128.537	72.504	20.559	16.466	151.493	154.689	147.316
3	0.9	0.6	0.6	21018.34	10434.520	144.977	102.150	111.562	82.483	17.979	16.749	149.344	152.539	145.167
4	0.7	0.8	0.9	25114.51	9074.418	158.476	95.260	131.116	71.045	20.901	16.820	151.837	155.032	147.659
5	0.9	0.5	0.7	21614.26	10011.060	147.018	100.055	114.970	81.279	18.450	16.865	149.736	152.931	145.558
6	0.8	0.7	0.7	22299.07	9047.479	149.329	95.118	119.645	78.133	19.189	16.866	150.172	153.368	145.995
7	0.9	1	0.4	19385.2	12268.360	139.231	110.763	101.276	87.352	16.497	16.900	148.212	151.407	144.034
8	0.8	1	0.5	20608.56	9748.548	143.557	98.735	110.900	81.858	17.930	16.913	149.069	152.264	144.891
9	1	0.3	0.8	21480.35	11079.180	146.562	105.258	112.280	84.444	17.966	17.105	149.649	152.844	145.471
10	1	0.7	0.4	18927.2	13452.640	137.576	115.986	97.996	89.718	15.982	17.114	147.877	151.072	143.700

References

1. Dhaliwal GS, Arora R. Integrated pest management: concepts and approaches. Ludhiana: Kalyani Publishers; 2015.
2. Gardner ES Jr. Exponential smoothing: the state of the art—Part II. Int J Forecast. 2006;22:637-66.
3. McKenzie E, Gardner ES Jr. Damped trend exponential smoothing: a modelling viewpoint. Int J Forecast. 2010;26:661-5.
4. Oni OV, Akanle YO. Comparison of exponential smoothing models for forecasting cassava production. Int J Sci Res Math Stat Sci. 2018;5(3):65-8.
5. Rudhran PRA, John N. Time series forecasting using hybrid Holt's exponential smoothing model with damping parameter and neural network. Int Sci J Eng Manag. 2025;4(4).
6. Sbrana G. Damped trend exponential smoothing: prediction and control. J Quant Econ. 2012;10(2)