

ISSN Print: 2664-844X
ISSN Online: 2664-8458
NAAS Rating (2025): 4.97
IJAFS 2026; 8(1): 188-191
www.agriculturaljournals.com
Received: 26-11-2025
Accepted: 28-12-2025

Vaibhav Vasnat Patil
PG Scholar, Department of
Agronomy, Post Graduate
Institute, Dr. Panjabrao
Deshmukh Krishi Vidyapeeth,
Akola, Maharashtra, India

AS Latkar
Assistant Professor,
Department of Agronomy,
Agriculture Research Station,
Buldhana, Maharashtra, India

Ashwini Hiwale
PG Scholar, Department of
Agronomy, Post Graduate
Institute, Dr. Panjabrao
Deshmukh Krishi Vidyapeeth,
Akola, Maharashtra, India

SU Kakade
Professor of Agronomy (CAS),
Cotton Research Unit Dr.
Panjabrao Deshmukh Krishi
Vidyapeeth, Akola,
Maharashtra, India

OS Rakhonde
Assistant Professor,
Department of Soil Science,
Post Graduate Institute, Dr.
Panjabrao Deshmukh Krishi
Vidyapeeth, Akola,
Maharashtra, India

Corresponding Author:
Vaibhav Vasnat Patil
PG Scholar, Department of
Agronomy, Post Graduate
Institute, Dr. Panjabrao
Deshmukh Krishi Vidyapeeth,
Akola, Maharashtra, India

Fiber quality, yield and economic evaluation of Bt cotton hybrids under high density planting under drip irrigation

Vaibhav Vasnat Patil, AS Latkar, Ashwini Hiwale, SU Kakade and OS Rakhonde

DOI: <https://www.doi.org/10.33545/2664844X.2026.v8.i1c.1140>

Abstract

A field trial was conducted at Cotton Research Farm, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola during the *kharif* season of 2024-25 to evaluate the response of different Bt cotton hybrids under varying plant geometry on fiber quality, yield and economic evaluation in Bt cotton under drip irrigation. Three Bt hybrids viz. AKHH 2022-1 Bt, RCH-971 BG-2 and SWCH 4823 BG-2 tested with three plant geometry viz. 90 cm x 15 cm, 90 cm x 30 cm and 90 cm x 45 cm in factorial randomized block design with three replications and nine treatment combinations. The field was equipped with an inline drip irrigation system with 16 mm laterals placed at 90 cm apart and drippers spaced 40 cm apart. Results revealed significant variation among Bt hybrids and spacing levels. The hybrid AKHH 2022-1 Bt recorded the highest seed cotton yield (3134 kg ha^{-1}) and lint yield (1165 kg ha^{-1}), numerically higher fiber quality parameters such as UHML (29.8 mm), micronaire value ($5.6 \mu\text{g inch}^{-1}$), tenacity (29.2 g tex^{-1}), elongation (%) and uniformity index (%) and maximum economic returns. Among plant geometry, denser planting of 90 cm x 15 cm registered the highest seed cotton (3435 kg ha^{-1}) and lint yield (1260 kg ha^{-1}). The closer spacing also enhanced gross ($251311 \text{ Rs ha}^{-1}$), net monetary returns ($145573 \text{ Rs ha}^{-1}$) and B:C ratio (2.82) compared to wider spacing. Whereas, in interaction effect of AKHH 2022-1 Bt sown at (90 cm x 15 cm) denser spacing recorded higher profitability with 2.72 B:C ratio.

Keywords: Bt cotton, drip irrigation, economics, fiber quality, high density planting system, seed cotton yield

Introduction

Cotton (*Gossypium hirsutum* L.) is the most important crop in India and plays a significant role in agriculture and industry worldwide. As per data from the USDA, for the year 2024-25, the expected area under cotton cultivation is 31.1 million hectares and the production is 117.40 million bales, each weighing 217.72 kg. China is largely producing 28.20 lakh bales, India 25 million bales, Brazil 16.90 million bales, the United States 14.30 million bales, and Pakistan 5.50 million bales. Among the states, Maharashtra is the highest producer with 84.80 lakh bales followed by Gujarat (80.01 lakh bales), Telangana (48.95 lakh bales), Rajasthan (20.42 lakh bales) and Karnataka (18.56 lakh bales). The area under cotton for 2024-25 is 112.94 lakh hectares, which is less than the 123.70 lakh hectares covered in 2023-24. Maharashtra occupied the maximum cotton area with 40.86 lakh hectares, followed by Gujarat (23.66 lakh hectares), Telangana (17.70 lakh hectares), Karnataka (6.84 lakh hectares) and Madhya Pradesh (6.14 lakh hectares). The study aims to evaluate fiber quality, yield performance and economic returns of different Bt cotton hybrids under high density planting with drip irrigation. Recent studies on high density planting under drip systems in Maharashtra have reported significant increases in seed cotton yield and economic returns, yet comprehensive evaluation of fiber quality traits under these integrated practices remains scarce. Therefore, this study was designed to evaluate the combined effects of high density planting and drip irrigation on fiber quality, yield components, and economic viability of Bt cotton in Maharashtra's agro-ecology, filling the current research gap and providing practical recommendations for sustainable cotton production.

Materials and Methods

The field experiment was conducted at the Cotton Research Farm, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola during the kharif season of 2024-25, to standardize the most suitable plant geometry suitable for different Bt cotton hybrids under high density planting (HDP) with drip irrigation, in order to maximize growth, yield and economic returns. Three Bt hybrids viz. AKHH 2022-1 Bt (V1), RCH-971 BG-2 (V2) and SWCH 4823 BG-2 (V3) were tested at 90 cm x 15 cm (S1), 90 cm x 30 cm (S2) and 90 cm x 45 cm (S3) plant geometry. Experiment was laid out in factorial randomized block design with three replications and nine treatment combinations. The field had a fairly flat and uniform topography. The farm equipped with inline drip irrigation system with 16 mm lateral lines placed at 90 cm intervals and 40 cm dripper spacing. Cotton planting was done on 7th July 2024. The recommended dose of fertilizer (RDF) (120:60:60 N:P₂O₅:K₂O kg ha⁻¹) was applied through drip fertigation as per the schedule. Phosphorus was applied as basal, while nitrogen and potassium were supplied in five splits (10% at sowing, 20% at 20 DAS, 25% each at 40 and 60 DAS, and 20% at 80 DAS). The drip system supplied 2.2-4.5 Ltr plant⁻¹ day⁻¹ depending on crop stage, crop production increases by 15-30 % and the efficiency of nitrogen, phosphorus and potassium obtained up to 95%, 45% and 80%. The growth and quality attributing parameters were recorded at appropriate time. The fiber quality parameters viz. Upper Half Mean Length (UHML), micronaire, tenacity, elongation and uniformity index were tested at CIROT, Nagpur laboratory and accordingly observations were noted.

Results and Discussion

Table 1: Fiber quality parameters [UHML, Micronaire value, Tenacity, Elongation (%), Uniformity index (%)] as influenced by different Bt hybrids and plant geometry under drip irrigation

Treatments	UHML (mm)	Micronaire value ($\mu\text{g inch}^{-1}$)	Tenacity (g tex ⁻¹)	Elongation (%)	Uniformity Index (%)
A) Bt hybrids					
V ₁ -AKHH 2022-1 Bt	29.8	5.6	29.2	5.6	84.8
V ₂ -RCH-971 BG-2	29.6	5.6	28.4	5.7	84.5
V ₃ -SWCH 4823 BG-2	29.3	5.0	28.6	5.6	84.6
SE (m) \pm	0.1	0.2	0.1	0.04	0.1
CD at 5%	NS	NS	NS	NS	NS
B) Plant geometry					
S ₁ -90 cm x 15 cm	29.5	5.5	29.1	5.7	84.8
S ₂ -90 cm x 30 cm	29.5	5.4	28.4	5.6	84.5
S ₃ -90 cm x 45 cm	29.7	5.2	28.7	5.7	84.6
SE (m) \pm	0.1	0.2	0.1	0.04	0.1
CD at 5%	NS	NS	NS	NS	NS
Interaction (V \times S)					
SE (m) \pm	0.2	0.3	0.2	0.08	0.2
CD at 5%	NS	NS	NS	NS	NS

Table 2: Seed cotton yield (kg ha⁻¹), lint yield (kg ha⁻¹) and economics of Bt cotton as influenced by different Bt hybrids and plant geometry under drip irrigation

Treatments	Seed cotton yield (kg ha ⁻¹)	Lint yield (kg ha ⁻¹)	Cost of cultivation (Rs. ha ⁻¹)	Gross monetary returns (Rs. ha ⁻¹)	Net monetary returns (Rs. ha ⁻¹)	B:C ratio
A) Bt hybrids						
V ₁ -AKHH 2022-1 Bt	3134	1165	83838	229411	145573	2.72
V ₂ -RCH-971 BG-2	2928	1088	82400	214669	132269	2.59
V ₃ -SWCH 4823 BG-2	2787	1024	81409	204371	122962	2.50
SE (m) \pm	50	19	-	1956	1763	-
CD at 5%	150	58	-	5864	5286	-

B) Plant geometry						
S ₁ -90 cm x 15 cm	3435	1260	89106	251311	162205	2.82
S ₂ -90 cm x 30 cm	2899	1076	81800	212564	130764	2.60
S ₃ -90 cm x 45 cm	2514	941	76741	184576	107835	2.40
SE (m) ±	50	19	-	1956	1763	-
CD at 5%	150	58	-	5864	5286	-
Interaction (V × S)						
SE (m) ±	86	33	-	3388	3054	-
CD at 5%	259	100	-	10157	9155	-

Table 3: Seed cotton yield (kg ha⁻¹) as influenced by interaction between Bt hybrids and plant geometry in cotton

Seed cotton Yield (kg ha⁻¹)				
Treatments	S₁ 90 cm x 15 cm	S₂ 90 cm x 30 cm	S₃ 90 cm x 45 cm	Mean
V ₁ -AKHH 2022-1 Bt	3744	3030	2626	3134
V ₂ -RCH-971 BG-2	3429	2908	2447	2928
V ₃ -SWCH 4823 BG-2	3132	2758	2470	2787
Mean	3435	2899	2514	
SE (m) ±		86		
CD at 5%		259		

Table 4: Lint yield (kg ha⁻¹) as influenced by interaction between Bt hybrids and plant geometry in cotton

Lint yield (kg ha⁻¹)				
Treatments	S₁ 90 cm x 15 cm	S₂ 90 cm x 30 cm	S₃ 90 cm x 45 cm	Mean
V ₁ -AKHH 2022-1 Bt	1392	1121	981	1165
V ₂ -RCH-971 BG-2	1270	1083	912	1088
V ₃ -SWCH 4823 BG-2	1117	1024	931	1024
Mean	1260	1076	941	
SE (m) ±		33		
CD at 5%		100		

Table 5: Net monetary returns as influenced by interaction between Bt hybrids and plant geometry in cotton

Net monetary returns (Rs. ha⁻¹)				
Treatments	S₁ 90 cm x 15 cm	S₂ 90 cm x 30 cm	S₃ 90 cm x 45 cm	Mean
V ₁ -AKHH 2022-1 Bt	182106	139421	115193	145573
V ₂ -RCH-971 BG-2	161663	131636	103508	132269
V ₃ -SWCH 4823 BG-2	142847	121236	104803	122962
Mean	162205	130764	107835	
SE (m) ±		3054		
CD at 5%		9155		

Effect on yield

Bt cotton hybrid AKHH 2022-1 recorded significantly higher seed cotton yield (3134 kg ha⁻¹), which was significantly superior to the other two hybrids. This was followed by RCH-971 BG-2 (2928 kg ha⁻¹), while the lowest seed cotton yield was noted with SWCH 4823 BG-2 (2787 kg ha⁻¹). The higher productivity of AKHH 2022-1 Bt could be attributed to its greater plant vigour, higher yield attributes and higher dry matter partitioning towards economic yield. Similar results were reported by Singh *et al.* (2010), Parlawar *et al.* (2017) and Parihar *et al.* (2018)^[7, 9, 6]. Plant geometry significantly influenced seed cotton yield. Closer plant spacing of 90 cm x 15 cm (3435 kg ha⁻¹) topped in rank compared to wider spacing of 90 cm x 30 cm (2899 kg ha⁻¹) and 90 cm x 45 cm (2514 kg ha⁻¹), indicating better utilization of space and higher plant population under high-density planting. Similar results were found by Solanki *et al.* (2020) and Gouthami *et al.* (2023)^[10, 3] (Table 2). Bt hybrid AKHH 2022-1 sown at denser plant spacing of 90 cm x 15 cm noted significantly higher seed cotton yield (3744 kg ha⁻¹) and lint yield (1392 kg ha⁻¹) over rest of treatment combinations (Table 3 and 4).

Effect on Economics

Among the treatments, AKHH 2022-1 Bt recorded the highest gross monetary returns (Rs. 229411 ha⁻¹), net monetary returns (Rs. 145573 ha⁻¹) and benefit-cost ratio of (2.72). In contrast, the Bt hybrid SWCH 4823 BG-2 registered the lowest gross monetary returns (Rs. 204371 ha⁻¹), net monetary returns (Rs. 122962 ha⁻¹) and benefit: cost ratio (2.50). In respect to plant geometry, closer spacing of 90 cm x 15 cm proved most remunerative by realizing maximum gross monetary returns (Rs. 251311 ha⁻¹), net monetary returns (Rs. 162205 ha⁻¹) and benefit: cost (2.82). While, the wider spacing of 90 cm x 45 cm resulted in the lowest economic returns with gross monetary returns (Rs. 184576 ha⁻¹), net monetary returns (Rs. 107835 ha⁻¹) with benefit-cost ratio (2.40) and lower seed cotton yield per ha. Similar results were reported by Kakade *et al.* (2023) and Latkar *et al.* (2024)^[4, 5]. The interaction was found to be significant only for net monetary returns. The treatment combination AKHH 2022-1 Bt sown at denser planting of 90 cm x 15 cm registered higher NMR of Rs.1,82,106 ha⁻¹ over rest of treatment combination (Table 5).

Conclusion

The study found that fiber quality (UHML, micronair value, tenacity, elongation% and uniformity index%) were numerically higher with Bt hybrid AKHH 2022-1 Bt and denser spacing of 90 cm x 15 cm. Bt cotton hybrids and plant geometry significantly influenced yield and economics of Bt cotton under high density planting system (HDPS) with drip irrigation.

Among the hybrids, AKHH 2022-1 Bt exhibited superior performance in terms of seed cotton yield and lint yield, which resulted in higher GMR, NMR and B:C ratio compared to the other hybrids. Similar kind of results observed in closer spacing of 90 cm x 15 cm enhanced seed cotton yield on a per hectare basis due to higher plant population, thereby achieving the highest GMR and NMR. Among interactions AKHH 2022-1 Bt with 90 cm x 15 cm spacing recorded the maximum productivity and profitability, proving its suitability for high density planting systems.

Thus, adoption of AKHH 2022-1 Bt at a spacing of 90 cm x 15 cm under drip irrigation is the most effective strategy to maximize yield and economic returns of Bt cotton hybrids.

References

1. Basal H, Tiftik AM. Genetic variability and heritability of fiber quality traits in upland cotton. *J Appl Sci*. 2007;7(7):1112-6.
2. Bradow JM, Davidonis GH. Quantitation of fiber quality and the cotton production-processing interface: a physiologist's perspective. *J Cotton Sci*. 2000;4(1):34-64.
3. Gouthami R, Nagabhushanam U, Ramanjaneyulu AV, Madhavi B, Kamalakar J, Yakadri M. Influence of plant geometry and cultivars on growth, yield attributes and yield of HDPS cotton under rainfed shallow soils. *Int J Environ Clim Chang*. 2023;13(10):245-50.
4. Kakade SU, Deshmukh V, Gawate AN, Rakholde OS, Potdukhe NR. Effect of fertigation levels and canopy management practices on growth, yield and economics of Bt cotton (*Gossypium hirsutum* L.). *Pharma Innov J*. 2023;12(6):4569-75.
5. Latkar AS, Surpam AN, Kadam SR, Yadgirwar PV. Bt cotton-based cropping systems suitable for Central Vidarbha zone of Maharashtra. *Int J Adv Biochem Res*. 2024;8(Suppl):1068-71.
6. Parihar LB, Rathod TH, Raut SM, Kahate NS. Impact of genotypes and high-density planting on yield, yield attributes and quality parameters in *hirsutum* cotton. *J Pharmacogn Phytochem*. 2018;7(2):2089-92.
7. Parlawar ND, Jiotode DJ, Khawle VS, Kubde KJ, Puri PD. Effect of planting geometry and varieties on morphophysiological parameters and yield of cotton. *J Soils Crops*. 2017;27(1):152-8.
8. Reddy PRR, Kumar BD. Fertilizer response studies in Bt cotton hybrid. *J Cotton Res Dev*. 2010;24(1):76-7.
9. Singh K, Singh H, Gumber RK, Rathore P. Studies on the seed cotton yield, growth and yield contributing characters of new Bt cotton hybrids under varied agronomic manipulations. In: World Cotton Research Conference - Technologies for Prosperity. Mumbai: International Cotton Advisory Committee; 2010. p. 237-41.
10. Solanki RM, Malam KV, Vasava MS, Chhodavadia SK. Response of Bt cotton to high density planting and

nitrogen levels through fertigation. *J Pharmacogn Phytochem*. 2020;9(5):1952-8.