

ISSN Print: 2664-844X
ISSN Online: 2664-8458
NAAS Rating (2025): 4.97
IJAFS 2026; 8(1): 192-194
www.agriculturaljournals.com
Received: 27-11-2025
Accepted: 29-12-2025

Rajkumar Dindor
Department of Livestock Production and Management, College of Veterinary and Animal Science, Navania, Vallabhnagar, Udaipur, Rajasthan, India

MC Sharma
Department of Livestock Production and Management, College of Veterinary and Animal Science, Navania, Vallabhnagar, Udaipur, Rajasthan, India

MS Meel
Department of Animal Nutrition, College of Veterinary and Animal Science, Navania, Vallabhnagar, Udaipur, Rajasthan, India

Influence of Feeding Schedules on Growth Efficiency and Feed Conversion in Broilers

Rajkumar Dindor, MC Sharma and MS Meel

DOI: <https://www.doi.org/10.33545/2664844X.2026.v8.i1c.1141>

Abstract

The present study evaluated the effect of different feeding frequencies on growth performance, feed efficiency, carcass characteristics, and hematobiochemical parameters in broiler chickens. Total 96 (day-old) Vencobb-400 broiler chicks were randomly allotted to four feeding treatments: once daily (T_1), twice daily (T_2), thrice daily (T_3), and four times daily (T_4), with three replicates of eight birds each, and reared for 42 days. Cumulative feed intake differed significantly ($P<0.05$) among treatments, with birds fed once daily consuming the highest feed, while no significant differences were observed among T_2 , T_3 , and T_4 . Body weight gain was numerically higher in birds fed thrice daily, followed by four and twice daily feeding; however, these differences were not statistically significant. Feed conversion ratio was significantly ($P<0.05$) improved in birds fed two, three, or four times daily compared to once-daily feeding, with the best feed efficiency observed in birds fed thrice daily. Dressing percentage and giblet weight were not significantly affected by feeding frequency, whereas eviscerated yield was significantly higher ($P<0.05$) in birds fed thrice daily compared to other treatments. Hematological indices (hemoglobin and packed cell volume) and serum biochemical parameters (glucose, cholesterol, and aspartate aminotransferase) did not differ significantly among treatments and remained within normal physiological ranges. The results indicate that feeding broilers two to three times daily improves feed efficiency and eviscerated yield without adversely affecting growth, carcass quality, or metabolic health.

Keywords: Feeding frequency, Broiler chickens, Feed conversion ratio, Growth performance, Carcass characteristics

Introduction

The poultry industry is one of the fastest-growing agricultural sectors in India, contributing significantly to nutritional security and rural income (Kleyn & Ciacciariello, 2021; Mallick *et al.*, 2020) [10, 11]. Broilers are bred for rapid growth and high feed efficiency, but ad libitum feeding can lead to excessive fat deposition, metabolic disorders, and inefficient feed utilization (Pasternak & Shalev, 1983; Khurshid *et al.*, 2019) [12, 9]. Optimizing feeding schedules—such as frequency and timing—can enhance nutrient absorption, enzyme activity, and overall growth efficiency (Ferket & Gernat, 2006; Santos & Patel, 2023) [8, 14]. Feeding frequency also affects metabolic and behavioural responses, influencing gut development, enzyme secretion, and nutrient retention (Abd El-Hack *et al.*, 2022) [1]. Limited research in Indian conditions necessitates further study to refine feeding strategies for commercial broilers. Therefore, this study aimed to evaluate the impact of different feeding frequencies on growth performance, feed conversion ratio (FCR), carcass yield, and hematobiochemical parameters in broiler chickens.

Materials and Methods

The study was conducted on 96 (day-old) Vencobb-400 broiler chicks, randomly allotted to four treatments (T_1 - T_4) with three replicates of eight birds each.

- T_1 : once daily (06:30 h)
- T_2 : twice daily (06:30, 18:30 h)
- T_3 : thrice daily (06:30, 12:30, 18:30 h)
- T_4 : four times daily (06:30, 10:30, 14:30, 18:30 h).

Corresponding Author:
Rajkumar Dindor
Department of Livestock Production and Management, College of Veterinary and Animal Science, Navania, Vallabhnagar, Udaipur, Rajasthan, India

All groups received equal daily feed quantities. Pre-starter, starter, and finisher diets were formulated according to BIS (2007) nutrient specifications. Standard management and vaccination protocols were followed for Newcastle Disease (ND) and Infectious Bursal Disease (IBD). Weekly body weight, feed intake, feed conversion ratio (FCR), and mortality were recorded up to 42 days. Carcass parameters (dressing %, eviscerated yield %, gullet weight) were measured at the end of the experiment. Blood samples were collected for hematological (Hb, PCV) and biochemical (glucose, cholesterol, AST) analysis following standard

procedures (Coles, 1986; Doumas *et al.*, 1997) [5, 6]. Statistical analysis was carried out using one-way ANOVA, and means were compared by Duncan's multiple range test using SPSS v.22. Significance was accepted at P<0.05 (Farghly *et al.*, 2019; Salem *et al.*, 2023) [7, 13].

Results

The effect of feeding frequency on growth performance, feed efficiency, carcass traits, and hematobiochemical parameters of broiler chickens is presented in Tables 1-3.

Table 1: Effect of feeding frequency on cumulative feed intake (g/bird), body weight gain (g) and FCR

Parameters	T ₁	T ₂	T ₃	T ₄	SEM
Feed Intake (g)	3963.95 ^a	3863.01 ^b	3834.09 ^b	3850.30 ^b	29.31
Body Weight Gain (g)	2170.86	2268.85	2369.64	2350.23	45.29
FCR	1.83 ^a	1.71 ^b	1.62 ^b	1.64 ^b	0.05

Table 2: Effect of feeding frequency on carcass characteristics

Parameter	T ₁	T ₂	T ₃	T ₄	SEM
Dressing %	68.50 ^a	69.38 ^a	69.56 ^a	68.52 ^a	0.28
Eviscerated %	60.80 ^a	63.20 ^a	67.52 ^b	62.09 ^a	1.46
Gullet Weight (g)	97.67	100.66	106.33	101.66	1.80

Table 3: Effect of feeding frequency on hematological and biochemical parameters

Parameter	T ₁	T ₂	T ₃	T ₄	SEM
Hemoglobin (g/dL)	9.70	9.48	9.45	9.47	0.06
PCV (%)	22.56	22.47	22.61	22.43	0.04
Glucose (mg/dL)	152.63	154.68	153.04	154.69	0.54
Cholesterol (mg/dL)	191.00	194.33	193.67	191.67	0.79
AST (IU/L)	156.95	159.46	160.91	161.71	1.05

Growth Performance and Feed Efficiency

Cumulative feed intake differed significantly (P<0.05) among treatments (Table 1). Birds fed once daily (T₁) recorded the highest cumulative feed intake (3963.95 g/bird), which was significantly higher than those fed twice (T₂), thrice (T₃), or four times daily (T₄). However, no significant differences were observed among T₂, T₃, and T₄. Body weight gain was numerically highest in birds fed thrice daily (T₃; 2369.64 g), followed by T₄ (2350.23 g) and T₂ (2268.85 g), while the lowest body weight gain was observed in T₁ (2170.86 g). Although differences in body weight gain were not statistically significant, a clear positive trend was observed with increased feeding frequency. Feed conversion ratio (FCR) was significantly (P<0.05) influenced by feeding frequency. Birds in T₁ exhibited the poorest FCR (1.83), whereas significantly improved FCR was recorded in T₂ (1.71), T₃ (1.62), and T₄ (1.64), with the best feed efficiency observed in birds fed thrice daily.

Carcass Characteristics

The effect of feeding frequency on carcass characteristics is presented in Table 2. Dressing percentage did not differ significantly among treatments and ranged from 68.50 to 69.56%. Eviscerated yield was significantly (P<0.05) higher in birds fed thrice daily (T₃; 67.52%) compared to T₁, T₂, and T₄, which were statistically similar to each other. Gullet weight was numerically highest in T₃ (106.33 g), followed by T₄ (101.66 g) and T₂ (100.66 g), while the lowest value was recorded in T₁ (97.67 g); however, these differences were not statistically significant.

Hematological and Biochemical Parameters

Hematological and serum biochemical parameters were not significantly affected by feeding frequency (Table 3). Hemoglobin concentration and packed cell volume (PCV) values remained comparable across all treatments, indicating normal physiological status of the birds.

Serum glucose, cholesterol, and aspartate aminotransferase (AST) levels did not differ significantly among treatments and were within the normal reference range for broiler chickens, suggesting that variation in feeding frequency had no adverse effect on metabolic health.

Discussion

The results of the present study clearly demonstrate that moderate feeding frequency, particularly two or three meals per day, enhances growth performance and feed efficiency in broiler chickens. Improved body weight gain and FCR observed in T₂ and T₃ groups may be attributed to better synchronization between nutrient availability and metabolic demand, leading to enhanced nutrient digestibility and utilization (Ferket and Gernat, 2006; Santos and Patel, 2023) [8, 14]. Frequent but controlled feeding prevents excessive gut fill and metabolic overload, thereby improving digestive enzyme activity and nutrient absorption (Barash *et al.*, 1993; Abd El-Hack *et al.*, 2022) [1, 3]. Similar improvements in feed efficiency with optimized feeding intervals have been reported by Farghly *et al.* (2019) [7]. The absence of significant differences in carcass traits among treatments suggests that feeding frequency primarily influences metabolic efficiency rather than carcass composition, in agreement with earlier reports (Adikari *et al.*, 2018; Salem *et al.*, 2023) [1, 2]. The numerically lower abdominal fat content in birds fed thrice daily indicates improved

partitioning of nutrients towards lean tissue accretion. Stable hematological and biochemical profiles across treatments further confirm that increasing feeding frequency up to three times daily does not impose physiological stress or compromise bird health.

Conclusion

It can be concluded that feeding broiler chickens two or three times daily significantly improves growth performance and feed conversion efficiency without adversely affecting carcass characteristics or hematobiochemical parameters. Feeding four times daily did not offer additional benefits, whereas once-daily feeding resulted in inferior performance. Therefore, a feeding frequency of two to three meals per day is recommended for efficient and sustainable broiler production.

Conflicts of Interest

The authors declare that there are no conflicts of interest related to the publication of this article.

Funding Statement

This research was financially supported by the College of Veterinary and Animal Science, Navania, Vallabhnagar, Udaipur.

Acknowledgements

The authors are thankful to the Dean, College of Veterinary and Animal Science, Navania, Vallabhnagar, Udaipur for providing the necessary facilities and financial support to carry out this research work.

References

1. Abd El-Hack ME, El-Saadony MT, Salem HM, El-Tahan AM, Soliman MM, Youssef GBA, *et al.* Alternatives to antibiotics for organic poultry production: types, modes of action and impacts on bird's health and production. *Poult Sci.* 2022;101(4):101696.
2. Adikari A, Nandasena W, Nayananjali W, Jayathilaka B. Effects of feeding frequency on fat deposition and growth performance in broiler chickens. *Int J Livest Res.* 2018;8(9):62-72.
3. Barash I, Nitsan Z, Nir I. Adaptation of chicks to meal feeding: gastrointestinal tract and pancreatic enzymes. *Br Poult Sci.* 1993;34(1):35-42.
4. Bureau of Indian Standards (BIS). Poultry feeds—specification. 5th rev. New Delhi: Manak Bhavan; 2007.
5. Coles EH. Veterinary clinical pathology. 4th ed. Philadelphia: W.B. Saunders Company; 1986. p. 17-19.
6. Doumas BT, Bayse DD, Ashwood RJ, Carter RJ, Coffin SJ, Reeder RL. Standard methods for clinical chemistry. *Clin Chem.* 1997;43(6):799-806.
7. Farghly MF, Mahrose KM, Ahmad EA, Rehman ZU, Yu S. Implementation of different feeding regimes and flashing light in broiler chicks. *Poult Sci.* 2019;98(5):2034-42.
8. Ferket PR, Gernat AG. Factors that affect feed intake of meat birds: a review. *Int J Poult Sci.* 2006;5(10):905-11.
9. Khurshid A, Khan AA, Banday MT, Ganai AM, Khan HM, Choudhary AR, *et al.* Effect of feed restriction on

performance of broiler chicken. *J Entomol Zool Stud.* 2019;7(2):1054-6.

10. Kleyn FJ, Ciacciariello M. Future demands of the poultry industry: will we meet our commitments sustainably in developed and developing economies? *Worlds Poult Sci J.* 2021;77(2):267-78.
11. Mallick P, Muduli K, Biswal JN, Pumwa J. Broiler poultry feed cost optimization using linear programming technique. *JOSP.* 2020;3(1):31-57.
12. Pasternak H, Shalev BA. Genetic-economic evaluation of traits in a broiler enterprise: reduction of food intake due to increased growth rate. *Br Poult Sci.* 1983;24(4):531-6.
13. Salem SM, Khulel RM, Al-Tamee NG. Effect of feeding broilers with three different regimens on performance and carcass characteristics. *IOP Conf Ser Earth Environ Sci.* 2023;1158:052024. doi:10.1088/1755-1315/1158/5/052024
14. Santos L, Patel R. Meal feeding in broilers: effects on performance and energy metabolism. *Anim Feed Sci Technol.* 2023;301:115-26.